The roller coaster diagram shows a set of cars moving downward from position 1 to position 2. As the cars travel from position 1 toward position 2, their...
- A. gravitational potential energy; total energy
- B. kinetic energy; gravitational potential energy
- C. total energy; kinetic energy
- D. gravitational potential energy; kinetic energy
Correct Answer & Rationale
Correct Answer: A
As the roller coaster cars move from position 1 to position 2, they descend, resulting in a decrease in gravitational potential energy due to their lower height. However, their total energy—comprising both kinetic and potential energy—remains constant, assuming negligible friction. Option B incorrectly suggests that kinetic energy increases while gravitational potential energy decreases, but it does not address total energy. Option C misrepresents the relationship by stating total energy changes, which it does not. Option D also fails, as it inaccurately implies that gravitational potential energy is the only energy type being discussed.
As the roller coaster cars move from position 1 to position 2, they descend, resulting in a decrease in gravitational potential energy due to their lower height. However, their total energy—comprising both kinetic and potential energy—remains constant, assuming negligible friction. Option B incorrectly suggests that kinetic energy increases while gravitational potential energy decreases, but it does not address total energy. Option C misrepresents the relationship by stating total energy changes, which it does not. Option D also fails, as it inaccurately implies that gravitational potential energy is the only energy type being discussed.
Other Related Questions
best explains the ammonia deposits found in ice core samples from the time of the Tunguska Event. The evidence that best supports the validity of this hypothesis is the-
- A. Hypothesis 2
- B. heat produced by fast-moving objects in the atmosphere
- C. Hypothesis 1
- D. match between measured and predicted amounts of ammonia
Correct Answer & Rationale
Correct Answer: A,D
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
If these results correctly predict the performance of this kneepad design, what is the probability that one of the kneepads will require a force of 145 N or greater to cause failure?
- A. 53%
- B. 22%
- C. 75%
- D. 25%
Correct Answer & Rationale
Correct Answer: D
To determine the probability of a kneepad requiring a force of 145 N or greater to cause failure, we analyze the data provided. The correct option, 25%, indicates that one-fourth of the kneepads are expected to fail under this force, aligning with statistical predictions for this design. Option A (53%) overestimates the likelihood, suggesting more than half will fail, which is not supported by the data. Option B (22%) underestimates the probability, indicating fewer kneepads will fail than expected. Option C (75%) is excessively high, implying a significant majority would fail, which contradicts the predicted performance. Thus, 25% accurately reflects the failure rate at this force threshold.
To determine the probability of a kneepad requiring a force of 145 N or greater to cause failure, we analyze the data provided. The correct option, 25%, indicates that one-fourth of the kneepads are expected to fail under this force, aligning with statistical predictions for this design. Option A (53%) overestimates the likelihood, suggesting more than half will fail, which is not supported by the data. Option B (22%) underestimates the probability, indicating fewer kneepads will fail than expected. Option C (75%) is excessively high, implying a significant majority would fail, which contradicts the predicted performance. Thus, 25% accurately reflects the failure rate at this force threshold.
Which statement describes one feature of the Rutherford-Bohr atom model that the Thomson model does not share?
- A. The Rutherford-Bohr model identifies different elements by the numbers of particles present.
- B. The Rutherford-Bohr model maintains the observed neutral charge of atoms.
- C. The Rutherford-Bohr model correctly describes the types of particles in the atom.
- D. The Rutherford-Bohr model restricts the positive charge of the atom to the nucleus.
Correct Answer & Rationale
Correct Answer: D
The Rutherford-Bohr model uniquely restricts the atom's positive charge to the nucleus, a significant advancement over the Thomson model, which depicts a diffuse positive charge throughout the atom. Option A is incorrect as both models can identify elements based on particle numbers, but the Rutherford-Bohr model adds more detail about electron arrangements. Option B is misleading; both models account for atomic neutrality, but the Rutherford-Bohr model provides a clearer structure. Option C is also inaccurate; while the Rutherford-Bohr model describes particles more accurately, it does not fundamentally change the types of particles present compared to Thomson's model.
The Rutherford-Bohr model uniquely restricts the atom's positive charge to the nucleus, a significant advancement over the Thomson model, which depicts a diffuse positive charge throughout the atom. Option A is incorrect as both models can identify elements based on particle numbers, but the Rutherford-Bohr model adds more detail about electron arrangements. Option B is misleading; both models account for atomic neutrality, but the Rutherford-Bohr model provides a clearer structure. Option C is also inaccurate; while the Rutherford-Bohr model describes particles more accurately, it does not fundamentally change the types of particles present compared to Thomson's model.
What natural process is required to connect the ice core data to the Tunguska Event?
- A. the cycling of carbon in forest fires
- B. the interaction of comets with the solar wind
- C. the movement of glaciers due to gravity
- D. the constant mixing of the atmosphere
Correct Answer & Rationale
Correct Answer: D
Connecting ice core data to the Tunguska Event necessitates understanding atmospheric dynamics, which is achieved through the constant mixing of the atmosphere. This mixing disperses particles and gases, allowing researchers to correlate ice core samples with historical events, including the Tunguska explosion. Option A, the cycling of carbon in forest fires, is unrelated to the atmospheric conditions or the specific data derived from ice cores. Option B, the interaction of comets with the solar wind, pertains to space phenomena rather than terrestrial atmospheric processes. Option C, the movement of glaciers due to gravity, describes glacial dynamics but does not address the atmospheric mixing needed to link ice core data to the event.
Connecting ice core data to the Tunguska Event necessitates understanding atmospheric dynamics, which is achieved through the constant mixing of the atmosphere. This mixing disperses particles and gases, allowing researchers to correlate ice core samples with historical events, including the Tunguska explosion. Option A, the cycling of carbon in forest fires, is unrelated to the atmospheric conditions or the specific data derived from ice cores. Option B, the interaction of comets with the solar wind, pertains to space phenomena rather than terrestrial atmospheric processes. Option C, the movement of glaciers due to gravity, describes glacial dynamics but does not address the atmospheric mixing needed to link ice core data to the event.