A cyclist can travel 17.6 feet per second. The cyclist would have a better understanding of her speed if it were measured in miles per hour. Which of these completes the expression used to convert the speed of the cyclist to miles per hour?
- A. 1 hour/60 seconds = 1 mile/5,280 feet
- B. 60 minutes/1 hour = 1 mile/5280 feet
- C. 60 minutes/1 hour = 5280 feet/1 mile
- D. 12 inches/1 foot = 60 minutes/1 hour
Correct Answer & Rationale
Correct Answer: C
To convert speed from feet per second to miles per hour, the conversion factors must relate time and distance appropriately. Option C correctly expresses the relationship between miles and feet, stating that 1 mile equals 5280 feet. Additionally, it includes the conversion of minutes to hours, with 60 minutes equating to 1 hour, which is essential for converting seconds to hours. Option A incorrectly suggests a different time conversion that mixes hours and seconds without properly aligning the units. Option B, while correctly stating the time conversion, mistakenly places the units in an incorrect order. Option D is irrelevant, as it focuses on inches and does not contribute to the necessary conversions for speed.
To convert speed from feet per second to miles per hour, the conversion factors must relate time and distance appropriately. Option C correctly expresses the relationship between miles and feet, stating that 1 mile equals 5280 feet. Additionally, it includes the conversion of minutes to hours, with 60 minutes equating to 1 hour, which is essential for converting seconds to hours. Option A incorrectly suggests a different time conversion that mixes hours and seconds without properly aligning the units. Option B, while correctly stating the time conversion, mistakenly places the units in an incorrect order. Option D is irrelevant, as it focuses on inches and does not contribute to the necessary conversions for speed.
Other Related Questions
Solve the equation for x: (2x-3)/5 = x/10
- A. 2
- B. 3
- C. 1\5
- D. 10
Correct Answer & Rationale
Correct Answer: A
To solve the equation \((2x-3)/5 = x/10\), first eliminate the fractions by multiplying both sides by 10, resulting in \(2(2x - 3) = x\). Simplifying gives \(4x - 6 = x\). Rearranging leads to \(4x - x = 6\), or \(3x = 6\), giving \(x = 2\). Option B (3) does not satisfy the equation when substituted back. Option C (1/5) results in a negative left side, while Option D (10) leads to an incorrect balance in the original equation. Thus, the only solution that holds true is \(x = 2\).
To solve the equation \((2x-3)/5 = x/10\), first eliminate the fractions by multiplying both sides by 10, resulting in \(2(2x - 3) = x\). Simplifying gives \(4x - 6 = x\). Rearranging leads to \(4x - x = 6\), or \(3x = 6\), giving \(x = 2\). Option B (3) does not satisfy the equation when substituted back. Option C (1/5) results in a negative left side, while Option D (10) leads to an incorrect balance in the original equation. Thus, the only solution that holds true is \(x = 2\).
A manufacturing plant makes dog toys in the shape of a sphere. The diameter of each dog toy is 3 inches. What is the surface area, in square inches of each dog toy?
- A. 113.04
- B. 75.36
- C. 28.26
- D. 37.68
Correct Answer & Rationale
Correct Answer: C
To find the surface area of a sphere, the formula used is \(4\pi r^2\). Given the diameter of the dog toy is 3 inches, the radius \(r\) is half of that, which is 1.5 inches. Plugging this into the formula: \[ Surface Area = 4\pi (1.5)^2 = 4\pi (2.25) \approx 28.26 \text{ square inches.} \] Option A (113.04) results from incorrectly using the diameter instead of the radius. Option B (75.36) arises from miscalculating the radius or misapplying the formula. Option D (37.68) likely results from a miscalculation of the surface area formula, possibly using an incorrect value for \(r\).
To find the surface area of a sphere, the formula used is \(4\pi r^2\). Given the diameter of the dog toy is 3 inches, the radius \(r\) is half of that, which is 1.5 inches. Plugging this into the formula: \[ Surface Area = 4\pi (1.5)^2 = 4\pi (2.25) \approx 28.26 \text{ square inches.} \] Option A (113.04) results from incorrectly using the diameter instead of the radius. Option B (75.36) arises from miscalculating the radius or misapplying the formula. Option D (37.68) likely results from a miscalculation of the surface area formula, possibly using an incorrect value for \(r\).
A scientist uses the expression 5/9(F - 32) to convert temperatures from degrees Fahrenheit (°F), F, to degrees Celsius (°C). To the nearest degree, what is the temperature, in °F, of a substance at -25°C?
- A. 13
- B. -32
- C. -13
- D. 18
Correct Answer & Rationale
Correct Answer: C
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
What is the slope of a line that is perpendicular to the line y = -9x + 7?
- A. 1\9
- B. -0.111111111
- C. 9
- D. -9
Correct Answer & Rationale
Correct Answer: A
To find the slope of a line perpendicular to the line given by the equation \(y = -9x + 7\), first identify the slope of the original line, which is \(-9\). The slope of a line perpendicular to another is the negative reciprocal of the original slope. The negative reciprocal of \(-9\) is \(\frac{1}{9}\). Option A, \(\frac{1}{9}\), is the correct slope. Option B, \(-0.111111111\), is incorrect as it represents \(-\frac{1}{9}\), not the positive reciprocal. Option C, \(9\), is incorrect because it is the opposite sign of the required reciprocal. Option D, \(-9\), is simply the original slope and does not represent a perpendicular relationship.
To find the slope of a line perpendicular to the line given by the equation \(y = -9x + 7\), first identify the slope of the original line, which is \(-9\). The slope of a line perpendicular to another is the negative reciprocal of the original slope. The negative reciprocal of \(-9\) is \(\frac{1}{9}\). Option A, \(\frac{1}{9}\), is the correct slope. Option B, \(-0.111111111\), is incorrect as it represents \(-\frac{1}{9}\), not the positive reciprocal. Option C, \(9\), is incorrect because it is the opposite sign of the required reciprocal. Option D, \(-9\), is simply the original slope and does not represent a perpendicular relationship.