ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

Solve the inequality for x: (1/8)x ? (1/2)x + 15
  • A. x ? -24
  • B. x ? -40
  • C. x ? -40
  • D. x ? -24
Correct Answer & Rationale
Correct Answer: C

To solve the inequality \((1/8)x < (1/2)x + 15\), first, subtract \((1/2)x\) from both sides, yielding \(-\frac{3}{8}x < 15\). Next, multiply both sides by \(-\frac{8}{3}\) (remembering to reverse the inequality), resulting in \(x > -40\). Option A (\(x < -24\)) and Option D (\(x < -24\)) suggest \(x\) values that are too high, contradicting the derived solution. Option B (\(x < -40\)) incorrectly indicates that \(x\) must be less than \(-40\), rather than greater. Thus, Option C accurately represents the solution \(x > -40\).

Other Related Questions

For an emergency service call, a plumbing company charges a flat fee of $60 plus $40 an hour. A customer remembers paying at least $200 for an emergency service. Which phrase describes the number of hours the plumbing company was at the service call?
  • A. at most 2 hours
  • B. at most 3.5 hours
  • C. at least 3.5 hours
  • D. at least 2 hours
Correct Answer & Rationale
Correct Answer: C

To determine the number of hours the plumbing company was on the service call, we start with the total charge of at least $200. The charge consists of a flat fee of $60 plus $40 per hour. First, subtract the flat fee from the total: $200 - $60 = $140. Next, divide this by the hourly rate: $140 รท $40 = 3.5 hours. This indicates that the service lasted at least 3.5 hours. Option A (at most 2 hours) is incorrect, as 2 hours would only cost $140. Option B (at most 3.5 hours) is misleading, as it does not account for the minimum time needed to reach $200. Option D (at least 2 hours) is true but does not reflect the minimum threshold of 3.5 hours. Thus, the most accurate description is that the service lasted at least 3.5 hours.
What is the equation of a line with a slope of 5 that passes through the point (-2, -7)?
  • A. y=5x+3
  • B. y=5x-3
  • C. y=5x-17
  • D. y=5x+17
Correct Answer & Rationale
Correct Answer: C

To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
Fix It Fast is an auto repair shop that employs 10 mechanics. Each day, the shop owner randomly picks 1 mechanic to receive a free lunch. What is the probability the shop owner will pick the same mechanic to receive a free lunch 2 days in a row?
  • A. 1\20
  • B. 1/100
  • C. 1\5
  • D. 1\10
Correct Answer & Rationale
Correct Answer: B

To determine the probability of picking the same mechanic two days in a row, we start by recognizing that there are 10 mechanics. On the first day, any mechanic can be chosen, which does not affect the overall probability. On the second day, to pick the same mechanic again, there is only 1 favorable outcome (the chosen mechanic) out of 10 possible mechanics. Thus, the probability of selecting that same mechanic on the second day is 1/10. Since the first day's choice does not influence this, we multiply the probabilities: (1/10) * (1/10) = 1/100. - Option A (1/20) is incorrect as it miscalculates the favorable outcomes. - Option C (1/5) incorrectly assumes a higher likelihood without considering the second day's requirement. - Option D (1/10) only reflects the probability of picking a mechanic on day two, not the two-day scenario.
Select the factors for the following expression 2x^2 - xy - 3y^2
  • A. (2x+3y)(x-y)
  • B. (x+y)(2x-3y)
  • C. (2x-y)(x+3y)
  • D. (2x-3y)(x+y)
Correct Answer & Rationale
Correct Answer: D

To factor the expression \(2x^2 - xy - 3y^2\), we look for two binomials that multiply to give the original expression. Option D, \((2x-3y)(x+y)\), expands to \(2x^2 + 2xy - 3xy - 3y^2\), which simplifies to \(2x^2 - xy - 3y^2\), matching the original expression. Option A, \((2x+3y)(x-y)\), expands to \(2x^2 - 2xy + 3xy - 3y^2\), resulting in \(2x^2 + xy - 3y^2\), which is incorrect. Option B, \((x+y)(2x-3y)\), gives \(2x^2 - 3xy + 2xy - 3y^2\), simplifying to \(2x^2 - xy - 3y^2\), but the signs do not match the original expression. Option C, \((2x-y)(x+3y)\), expands to \(2x^2 + 6xy - xy - 3y^2\), leading to \(2x^2 + 5xy - 3y^2\), which is also incorrect. Thus, only Option D correctly factors the expression.