The rotation of Earth around its axis is responsible for which of the following?
- A. The force of gravity
- B. The day and night cycle
- C. The temperature differences between seasons
- D. The movement of continents relative to one another
Correct Answer & Rationale
Correct Answer: B
The rotation of Earth around its axis creates the day and night cycle, as different parts of the planet face the Sun and then move into its shadow. This explains why we experience daytime and nighttime in a 24-hour period. Option A is incorrect; gravity is primarily caused by Earth's mass, not its rotation. Option C is also wrong; temperature differences between seasons are due to Earth's tilt and its orbit around the Sun, not its rotation. Lastly, option D misrepresents the concept; the movement of continents is influenced by tectonic activity, not the rotation of Earth.
The rotation of Earth around its axis creates the day and night cycle, as different parts of the planet face the Sun and then move into its shadow. This explains why we experience daytime and nighttime in a 24-hour period. Option A is incorrect; gravity is primarily caused by Earth's mass, not its rotation. Option C is also wrong; temperature differences between seasons are due to Earth's tilt and its orbit around the Sun, not its rotation. Lastly, option D misrepresents the concept; the movement of continents is influenced by tectonic activity, not the rotation of Earth.
Other Related Questions
An astronaut travels to the Moon, where the magnitude of the force of gravity is one-sixth the magnitude of the force of gravity on Earth. On the Moon, which of the following is true?
- A. The astronaut's mass is one-sixth of his mass on Earth.
- B. The astronaut's weight is one-sixth of his weight on Earth.
- C. The astronaut's mass is six times his mass on Earth.
- D. The astronaut's weight is six times his weight on Earth.
Correct Answer & Rationale
Correct Answer: B
An astronaut's mass remains constant regardless of location; therefore, option A is incorrect as mass on the Moon is the same as on Earth. Option C is also incorrect because mass does not change based on gravitational force. Option D misrepresents weight; weight is dependent on gravity, and since the Moon's gravity is one-sixth that of Earth's, the astronaut's weight is one-sixth, not six times. Thus, option B accurately reflects that the astronaut's weight on the Moon is one-sixth of his weight on Earth, aligning with the relationship between weight and gravitational force.
An astronaut's mass remains constant regardless of location; therefore, option A is incorrect as mass on the Moon is the same as on Earth. Option C is also incorrect because mass does not change based on gravitational force. Option D misrepresents weight; weight is dependent on gravity, and since the Moon's gravity is one-sixth that of Earth's, the astronaut's weight is one-sixth, not six times. Thus, option B accurately reflects that the astronaut's weight on the Moon is one-sixth of his weight on Earth, aligning with the relationship between weight and gravitational force.
The preceding figure represents a cloud that has formed in the atmosphere above Earth's surface. Which of the following diagrams best illustrates the arrangement of charges in the cloud and on Earth's surface just before a cloud-to-ground lightning strike?
- A. Cloud: top (+), middle (-), bottom (+); Ground: (-)
- B. Cloud: top (+), middle (+), bottom (-); Ground: (+)
- C. Cloud: top (-), middle (+), bottom (+); Ground: (-)
- D. Cloud: top (+), middle (-), bottom (-); Ground: (+)
Correct Answer & Rationale
Correct Answer: D
In a thunderstorm, clouds typically develop a charge separation where the upper region becomes positively charged and the lower region negatively charged. This charge distribution is crucial for lightning formation. Option D accurately represents this arrangement: the top of the cloud is positively charged, the middle is negatively charged, and the bottom is also negatively charged, while the ground becomes positively charged in response to the cloud's negative charge. Option A incorrectly places a positive charge at the bottom of the cloud, which does not align with typical charge distributions. Option B misrepresents the charges by having two positive regions in the cloud, which is unlikely. Option C also fails by placing the top of the cloud negatively charged, contradicting the established understanding of charge distribution in storm clouds.
In a thunderstorm, clouds typically develop a charge separation where the upper region becomes positively charged and the lower region negatively charged. This charge distribution is crucial for lightning formation. Option D accurately represents this arrangement: the top of the cloud is positively charged, the middle is negatively charged, and the bottom is also negatively charged, while the ground becomes positively charged in response to the cloud's negative charge. Option A incorrectly places a positive charge at the bottom of the cloud, which does not align with typical charge distributions. Option B misrepresents the charges by having two positive regions in the cloud, which is unlikely. Option C also fails by placing the top of the cloud negatively charged, contradicting the established understanding of charge distribution in storm clouds.
Which of the following best describes a comet?
- A. A small planet orbiting the Sun between Mars and Jupiter.
- B. A chunk composed primarily of metal that enters Earth's atmosphere.
- C. A chunk composed primarily of rock, ice, and dust orbiting the Sun in an elliptical path.
- D. A dark region that appears periodically on the surface of the Sun.
Correct Answer & Rationale
Correct Answer: C
Option C accurately describes a comet as a chunk composed primarily of rock, ice, and dust that orbits the Sun in an elliptical path. This definition captures the essential components and behavior of comets. Option A incorrectly defines a comet as a small planet, which is misleading; comets are distinct from asteroids and do not have the same characteristics. Option B describes a meteoroid, which is a metallic chunk entering Earth's atmosphere, not a comet. Option D refers to sunspots, which are dark regions on the Sun's surface, unrelated to comets. Each incorrect option misrepresents the nature of comets, highlighting the unique characteristics of these celestial bodies.
Option C accurately describes a comet as a chunk composed primarily of rock, ice, and dust that orbits the Sun in an elliptical path. This definition captures the essential components and behavior of comets. Option A incorrectly defines a comet as a small planet, which is misleading; comets are distinct from asteroids and do not have the same characteristics. Option B describes a meteoroid, which is a metallic chunk entering Earth's atmosphere, not a comet. Option D refers to sunspots, which are dark regions on the Sun's surface, unrelated to comets. Each incorrect option misrepresents the nature of comets, highlighting the unique characteristics of these celestial bodies.
Which TWO of the following statements about the universe are true?
- A. The universe is expanding.
- B. The Milky Way galaxy contains most of the stars in the universe.
- C. A star's size, temperature, and composition typically remain constant throughout its life cycle.
- D. A black hole is usually detected by the intense visible light it emits.
Correct Answer & Rationale
Correct Answer: A
Option A accurately reflects current astronomical understanding, as evidence shows the universe is expanding due to the redshift of distant galaxies. Option B is incorrect; while the Milky Way is large, it contains only a small fraction of the universe's stars, which are spread across billions of galaxies. Option C is misleading; stars undergo significant changes in size, temperature, and composition throughout their life cycles, particularly during phases like red giant or supernova. Option D is also false; black holes do not emit visible light; they are detected through their gravitational effects and the radiation from material falling into them.
Option A accurately reflects current astronomical understanding, as evidence shows the universe is expanding due to the redshift of distant galaxies. Option B is incorrect; while the Milky Way is large, it contains only a small fraction of the universe's stars, which are spread across billions of galaxies. Option C is misleading; stars undergo significant changes in size, temperature, and composition throughout their life cycles, particularly during phases like red giant or supernova. Option D is also false; black holes do not emit visible light; they are detected through their gravitational effects and the radiation from material falling into them.