Which of the following plant structures are specialized for the absorption of water and nutrients from the environment?
- A. Roots
- B. Leaves
- C. Flowers
- D. Stems
Correct Answer & Rationale
Correct Answer: A
Roots are specialized structures designed for the absorption of water and nutrients from the soil, featuring a large surface area and root hairs that enhance their efficiency. Leaves primarily function in photosynthesis and gas exchange, not nutrient absorption. Flowers are reproductive structures that facilitate pollination and seed production, playing no direct role in nutrient uptake. Stems support the plant and transport water and nutrients between roots and leaves, but they do not absorb them. Thus, roots are uniquely equipped for this essential task.
Roots are specialized structures designed for the absorption of water and nutrients from the soil, featuring a large surface area and root hairs that enhance their efficiency. Leaves primarily function in photosynthesis and gas exchange, not nutrient absorption. Flowers are reproductive structures that facilitate pollination and seed production, playing no direct role in nutrient uptake. Stems support the plant and transport water and nutrients between roots and leaves, but they do not absorb them. Thus, roots are uniquely equipped for this essential task.
Other Related Questions
Which of the following best explains why an ice skater is able to coast on ice for a long distance without pushing off in a straight line across the ice?
- A. The force of friction on the blades of the skates is greater than the force of friction on the ice.
- B. The force of friction on the blades of the skates is less than the force of friction on the ice.
- C. The ice exerts a constant forward force on the skater.
- D. The buoyant force on the blades of the skates is greater than the weight of the skater.
Correct Answer & Rationale
Correct Answer: B
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
The speed of light in empty space, that is, a vacuum, is 300,000 km/s. The speed of sound in empty space is:
- B. greater than 0 but less than 300,000 km/s
- C. 300,000 km/s
- D. greater than 300,000 km/s
Correct Answer & Rationale
Correct Answer: A
The speed of sound requires a medium, such as air or water, to propagate; it cannot travel through a vacuum. Therefore, the speed of sound in empty space is effectively zero. Option B suggests that the speed of sound is greater than 0 but less than 300,000 km/s, which is incorrect because sound cannot exist in a vacuum. Option C states it is 300,000 km/s, which misrepresents sound's nature, as this speed is specific to light. Option D claims it is greater than 300,000 km/s, which is impossible since sound cannot travel in a vacuum at all. Thus, the only valid conclusion is that the speed of sound in empty space is zero.
The speed of sound requires a medium, such as air or water, to propagate; it cannot travel through a vacuum. Therefore, the speed of sound in empty space is effectively zero. Option B suggests that the speed of sound is greater than 0 but less than 300,000 km/s, which is incorrect because sound cannot exist in a vacuum. Option C states it is 300,000 km/s, which misrepresents sound's nature, as this speed is specific to light. Option D claims it is greater than 300,000 km/s, which is impossible since sound cannot travel in a vacuum at all. Thus, the only valid conclusion is that the speed of sound in empty space is zero.
Of the following gases, which is found in the atmosphere in the greatest concentration?
- A. O2
- B. N2
- C. H2
- D. CO2
Correct Answer & Rationale
Correct Answer: B
Nitrogen (N2) constitutes about 78% of the Earth's atmosphere, making it the most abundant gas. Oxygen (O2), while essential for life, is present at around 21%, significantly less than nitrogen. Hydrogen (H2) is found in trace amounts and is not a major component of the atmosphere. Carbon dioxide (CO2) is also present in much smaller concentrations, approximately 0.04%, and is primarily significant for its role in climate regulation. Therefore, nitrogen is the predominant gas, while the others are present in much lower concentrations.
Nitrogen (N2) constitutes about 78% of the Earth's atmosphere, making it the most abundant gas. Oxygen (O2), while essential for life, is present at around 21%, significantly less than nitrogen. Hydrogen (H2) is found in trace amounts and is not a major component of the atmosphere. Carbon dioxide (CO2) is also present in much smaller concentrations, approximately 0.04%, and is primarily significant for its role in climate regulation. Therefore, nitrogen is the predominant gas, while the others are present in much lower concentrations.
On the periodic table, elements in the same row are characterized by:
- A. an increasing number of neutrons from left to right.
- B. a decreasing number of neutrons from left to right.
- C. an increasing number of protons from left to right.
- D. a decreasing number of protons from left to right.
Correct Answer & Rationale
Correct Answer: C
Elements in the same row, or period, of the periodic table are arranged by increasing atomic number, which corresponds to the number of protons. Therefore, as you move from left to right across a row, the number of protons increases. Option A is incorrect because the number of neutrons does not consistently increase across a row; it varies based on the specific isotopes of each element. Option B is also incorrect for the same reason, as neutrons can vary independently of proton count. Option D is incorrect since it suggests a decrease in protons, which contradicts the fundamental organization of the periodic table.
Elements in the same row, or period, of the periodic table are arranged by increasing atomic number, which corresponds to the number of protons. Therefore, as you move from left to right across a row, the number of protons increases. Option A is incorrect because the number of neutrons does not consistently increase across a row; it varies based on the specific isotopes of each element. Option B is also incorrect for the same reason, as neutrons can vary independently of proton count. Option D is incorrect since it suggests a decrease in protons, which contradicts the fundamental organization of the periodic table.