Which of the following plant structures are specialized for the absorption of water and nutrients from the environment?
- A. Roots
- B. Leaves
- C. Flowers
- D. Stems
Correct Answer & Rationale
Correct Answer: A
Roots are specialized structures designed for the absorption of water and nutrients from the soil, featuring a large surface area and root hairs that enhance their efficiency. Leaves primarily function in photosynthesis and gas exchange, not nutrient absorption. Flowers are reproductive structures that facilitate pollination and seed production, playing no direct role in nutrient uptake. Stems support the plant and transport water and nutrients between roots and leaves, but they do not absorb them. Thus, roots are uniquely equipped for this essential task.
Roots are specialized structures designed for the absorption of water and nutrients from the soil, featuring a large surface area and root hairs that enhance their efficiency. Leaves primarily function in photosynthesis and gas exchange, not nutrient absorption. Flowers are reproductive structures that facilitate pollination and seed production, playing no direct role in nutrient uptake. Stems support the plant and transport water and nutrients between roots and leaves, but they do not absorb them. Thus, roots are uniquely equipped for this essential task.
Other Related Questions
A teacher is introducing the geologic time scale to third-grade students. She tells them that the entire history of Earth, from its formation to the present day, was 24 hours long, with 12:00 midnight representing the time of the formation of Earth and 12:00 midnight the following night representing the present day. About what time did humans appear in this 24-hour time scale?
- A. 11:58 PM
- B. 9:00 PM
- C. 6:00 PM
- D. 1:00 PM
Correct Answer & Rationale
Correct Answer: A
In this 24-hour analogy of Earth's history, humans appeared very recently, approximately 200,000 years ago, which is just a fraction of the total time. This corresponds to 11:58 PM, indicating that humans emerged just two minutes before the "midnight" representing the present day. Option B (9:00 PM) suggests a much earlier appearance, which does not align with the scientific timeline of human evolution. Option C (6:00 PM) is even earlier, placing humans in a time when dinosaurs were still prominent. Option D (1:00 PM) is far too early, as it would imply humans existed when early mammals were just beginning to evolve. Thus, only 11:58 PM accurately reflects the brief time humans have existed in the context of Earth's history.
In this 24-hour analogy of Earth's history, humans appeared very recently, approximately 200,000 years ago, which is just a fraction of the total time. This corresponds to 11:58 PM, indicating that humans emerged just two minutes before the "midnight" representing the present day. Option B (9:00 PM) suggests a much earlier appearance, which does not align with the scientific timeline of human evolution. Option C (6:00 PM) is even earlier, placing humans in a time when dinosaurs were still prominent. Option D (1:00 PM) is far too early, as it would imply humans existed when early mammals were just beginning to evolve. Thus, only 11:58 PM accurately reflects the brief time humans have existed in the context of Earth's history.
A neutral atom always contains an equal number of which of the following?
- A. Protons and electrons
- B. Protons and neutrons
- C. Neutrons and electrons
- D. Protons and alpha particles
Correct Answer & Rationale
Correct Answer: A
A neutral atom contains an equal number of protons and electrons, ensuring that the positive and negative charges balance each other out, resulting in no overall charge. Option B is incorrect because protons and neutrons do not need to be equal; the number of neutrons can vary, leading to different isotopes. Option C is also wrong, as neutrons do not have a charge and do not balance with electrons, which are negatively charged. Lastly, option D is incorrect since alpha particles, which consist of two protons and two neutrons, are not found in neutral atoms and do not play a role in charge balance.
A neutral atom contains an equal number of protons and electrons, ensuring that the positive and negative charges balance each other out, resulting in no overall charge. Option B is incorrect because protons and neutrons do not need to be equal; the number of neutrons can vary, leading to different isotopes. Option C is also wrong, as neutrons do not have a charge and do not balance with electrons, which are negatively charged. Lastly, option D is incorrect since alpha particles, which consist of two protons and two neutrons, are not found in neutral atoms and do not play a role in charge balance.
An object is lifted above the floor to a height X, as illustrated, and then released. Which of the following best describes the object's energy?
- A. At height X, the energy is kinetic and changes to potential as the object falls.
- B. At height X, the energy is potential and changes to kinetic as the object falls.
- C. At height X, the energy is zero and the object gains both kinetic and potential energy as it falls.
- D. At height X, the energy is potential and the object gains kinetic energy as it falls, while its potential energy decreases.
Correct Answer & Rationale
Correct Answer: B
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
A student is conducting an experiment to determine how the temperature of water affects the rate at which sugar dissolves. The student uses four beakers with the same amount of water at different temperatures: 20C, 40C, 60C, and 80C. The student adds the same amount of sugar to each beaker and stirs for the same length of time. Which of the following is the independent variable in this experiment?
- A. The amount of sugar added to each beaker.
- B. The temperature of the water in each beaker.
- C. The time it takes for the sugar to dissolve.
- D. The amount of stirring done in each beaker.
Correct Answer & Rationale
Correct Answer: B
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.