The width of a painting is 24 centimeters shorter than its length, x. The area of the painting is 4,081 square centimeters. Which equation could be used to find the dimensions of the painting?
- A. x^2 - 24x - 4,081 = 0
- B. x^2 + 24x - 4,081 = 0
- C. x^2 + 24x + 4,081 = 0
- D. x^2 - 24x + 4,081 = 0
Correct Answer & Rationale
Correct Answer: A
To find the dimensions of the painting, we start with the relationship between length and width. The width is 24 cm shorter than the length \(x\), so it can be expressed as \(x - 24\). The area of a rectangle is given by the product of its length and width, resulting in the equation \(x(x - 24) = 4,081\). Expanding this leads to \(x^2 - 24x - 4,081 = 0\), which matches option A. Option B incorrectly adds 24x, leading to an incorrect area calculation. Option C incorrectly adds 24 and includes a positive constant, which does not represent the area. Option D incorrectly adds 4,081 and has a positive term that does not reflect the relationship between length and width.
To find the dimensions of the painting, we start with the relationship between length and width. The width is 24 cm shorter than the length \(x\), so it can be expressed as \(x - 24\). The area of a rectangle is given by the product of its length and width, resulting in the equation \(x(x - 24) = 4,081\). Expanding this leads to \(x^2 - 24x - 4,081 = 0\), which matches option A. Option B incorrectly adds 24x, leading to an incorrect area calculation. Option C incorrectly adds 24 and includes a positive constant, which does not represent the area. Option D incorrectly adds 4,081 and has a positive term that does not reflect the relationship between length and width.
Other Related Questions
The distance, d, in feet, it takes to come to a complete stop when driving a car r miles per hour can be found using the equation d = 1/20(r^2)+ r. If it takes a car 240 feet to come to a complete stop, what was the speed of the car, in miles per hour, when the driver began to stop it?
- A. 40
- B. 30
- C. 60
- D. 80
Correct Answer & Rationale
Correct Answer: A
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
Type your answer in the box. You may use numbers, a decimal point (.), and/or a negative sign (-) in your answer.
A company received a shipment of 8 boxes of metal brackets.
• There are 20 metal brackets in each box.
• The total weight of the shipment is 48 pounds.
What is the weight, in pounds, of each metal bracket?
Correct Answer & Rationale
Correct Answer: 0.3
To find the weight of each metal bracket, first calculate the total number of brackets by multiplying the number of boxes (8) by the number of brackets per box (20), resulting in 160 brackets. Next, divide the total weight of the shipment (48 pounds) by the total number of brackets (160). This calculation yields a weight of 0.3 pounds per bracket. Other options may include numbers that misrepresent the division or assume incorrect values for the total brackets or shipment weight. For example, using a weight of 1 pound per bracket would imply only 48 brackets, which contradicts the initial information provided.
To find the weight of each metal bracket, first calculate the total number of brackets by multiplying the number of boxes (8) by the number of brackets per box (20), resulting in 160 brackets. Next, divide the total weight of the shipment (48 pounds) by the total number of brackets (160). This calculation yields a weight of 0.3 pounds per bracket. Other options may include numbers that misrepresent the division or assume incorrect values for the total brackets or shipment weight. For example, using a weight of 1 pound per bracket would imply only 48 brackets, which contradicts the initial information provided.
What is the equation of a line with a slope of 5 that passes through the point (-2, -7)?
- A. y=5x+3
- B. y=5x-3
- C. y=5x-17
- D. y=5x+17
Correct Answer & Rationale
Correct Answer: C
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
Multiply: (x^2 - 3)(x^5 + 2x^3)
- A. x^7,-3x^5,-6x^3
- B. x^10,2x^5,-6x^3
- C. 5x^5,2x^6,-6x^3
- D. x^7,2x^5,-6
Correct Answer & Rationale
Correct Answer: A
To find the product of (x^2 - 3)(x^5 + 2x^3), we apply the distributive property (FOIL method). 1. **First Terms**: x^2 * x^5 = x^7. 2. **Outer Terms**: x^2 * 2x^3 = 2x^5. 3. **Inner Terms**: -3 * x^5 = -3x^5. 4. **Last Terms**: -3 * 2x^3 = -6x^3. Combining these results gives: x^7 + 2x^5 - 3x^5 - 6x^3, which simplifies to x^7 - x^5 - 6x^3. Option A correctly lists the terms as x^7, -3x^5, -6x^3. Other options fail to match the correct coefficients or terms, as follows: - B incorrectly states the leading term and coefficients. - C miscalculates the powers of x and coefficients. - D omits the x terms entirely, providing an incomplete expression.
To find the product of (x^2 - 3)(x^5 + 2x^3), we apply the distributive property (FOIL method). 1. **First Terms**: x^2 * x^5 = x^7. 2. **Outer Terms**: x^2 * 2x^3 = 2x^5. 3. **Inner Terms**: -3 * x^5 = -3x^5. 4. **Last Terms**: -3 * 2x^3 = -6x^3. Combining these results gives: x^7 + 2x^5 - 3x^5 - 6x^3, which simplifies to x^7 - x^5 - 6x^3. Option A correctly lists the terms as x^7, -3x^5, -6x^3. Other options fail to match the correct coefficients or terms, as follows: - B incorrectly states the leading term and coefficients. - C miscalculates the powers of x and coefficients. - D omits the x terms entirely, providing an incomplete expression.