Two men are employed at a local supermarket. The table shows James's earnings, and the graph shows Eric's earnings.
Based on the information above, who earns the greater amount per hour, and how much does he earn for a 7-hour shift?
- A. James earns the greater amount per hour and earns $73.50 for a 7-hour shift.
- B. James earns the greater amount per hour and earns $70.00 for a 7-hour shift.
- C. Eric earns the greater amount per hour and earns $70.00 for a 7-hour shift.
- D. Eric earns the greater amount per hour and earns $73.50 for a 7-hour shift.
Correct Answer & Rationale
Correct Answer: D
To determine who earns more per hour, one must compare the hourly rates of James and Eric. If Eric's hourly rate is higher, he earns more for a 7-hour shift, calculated as his hourly rate multiplied by 7. Option A incorrectly states James earns more and miscalculates his earnings. Option B also claims James earns more but provides the wrong total for a 7-hour shift. Option C correctly identifies Eric as the higher earner but misstates his total earnings for a 7-hour shift. Option D accurately identifies Eric as the higher earner and correctly calculates his earnings for a 7-hour shift at $73.50.
To determine who earns more per hour, one must compare the hourly rates of James and Eric. If Eric's hourly rate is higher, he earns more for a 7-hour shift, calculated as his hourly rate multiplied by 7. Option A incorrectly states James earns more and miscalculates his earnings. Option B also claims James earns more but provides the wrong total for a 7-hour shift. Option C correctly identifies Eric as the higher earner but misstates his total earnings for a 7-hour shift. Option D accurately identifies Eric as the higher earner and correctly calculates his earnings for a 7-hour shift at $73.50.
Other Related Questions
Which table shows a function?
-
A.
-
B.
-
C.
-
D.
Correct Answer & Rationale
Correct Answer: A
To determine which table represents a function, we look for a unique output for every input. Option A demonstrates this principle, as each input corresponds to a single output, confirming a functional relationship. In contrast, Option B features repeated inputs yielding different outputs, violating the definition of a function. Option C also presents multiple outputs for the same input, disqualifying it as a function. Lastly, Option D has inputs linked to multiple outputs as well, further indicating it does not represent a function. Thus, only Option A adheres to the criteria for a function.
To determine which table represents a function, we look for a unique output for every input. Option A demonstrates this principle, as each input corresponds to a single output, confirming a functional relationship. In contrast, Option B features repeated inputs yielding different outputs, violating the definition of a function. Option C also presents multiple outputs for the same input, disqualifying it as a function. Lastly, Option D has inputs linked to multiple outputs as well, further indicating it does not represent a function. Thus, only Option A adheres to the criteria for a function.
How many more miles did the space shuttle Discovery travel than the space shuttle Atlantis?
- A. 274,100,000 miles
- B. 274,100 miles
- C. 22.3 miles
- D. 22,300,000 miles
Correct Answer & Rationale
Correct Answer: D
To determine the difference in miles traveled between the space shuttles Discovery and Atlantis, one must subtract the total miles of Atlantis from Discovery. The calculation reveals that Discovery traveled 22,300,000 miles more than Atlantis, making option D the accurate choice. Option A, 274,100,000 miles, is excessively high and does not reflect the actual difference. Option B, 274,100 miles, is too low and misrepresents the scale of space travel. Option C, 22.3 miles, is trivial and fails to capture the vast distances involved in space missions. Thus, option D accurately represents the significant difference in miles traveled.
To determine the difference in miles traveled between the space shuttles Discovery and Atlantis, one must subtract the total miles of Atlantis from Discovery. The calculation reveals that Discovery traveled 22,300,000 miles more than Atlantis, making option D the accurate choice. Option A, 274,100,000 miles, is excessively high and does not reflect the actual difference. Option B, 274,100 miles, is too low and misrepresents the scale of space travel. Option C, 22.3 miles, is trivial and fails to capture the vast distances involved in space missions. Thus, option D accurately represents the significant difference in miles traveled.
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer.
A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Correct Answer & Rationale
Correct Answer: 583/625
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
Acceleration, a, in meters per second squared (m/5}), is found by the formula a= (V2-V2)/t where V1, is the beginning velocity, V2 is the end velocity, and t is time. What is the acceleration, in m/s^2, of an object with a beginning velocity of 14 m/s and end velocity of 8 m/s over a time of 4 seconds?
- A. 1.5
- B. -1.5
- C. 4.5
- D. -12
Correct Answer & Rationale
Correct Answer: B
To find acceleration, use the formula \( a = \frac{V2 - V1}{t} \). Here, \( V1 = 14 \, \text{m/s} \) and \( V2 = 8 \, \text{m/s} \). Plugging in the values gives \( a = \frac{8 - 14}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference between velocities and does not reflect the negative change. Option D (-12) results from incorrect arithmetic, misapplying the formula. Thus, the only accurate calculation shows the object is decelerating at -1.5 m/s².
To find acceleration, use the formula \( a = \frac{V2 - V1}{t} \). Here, \( V1 = 14 \, \text{m/s} \) and \( V2 = 8 \, \text{m/s} \). Plugging in the values gives \( a = \frac{8 - 14}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference between velocities and does not reflect the negative change. Option D (-12) results from incorrect arithmetic, misapplying the formula. Thus, the only accurate calculation shows the object is decelerating at -1.5 m/s².