ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

What is the value of 0.6 - (0.7)(1.4)?
  • A. -0.38
  • B. -0.14
  • C. -0.42
  • D. -1.5
Correct Answer & Rationale
Correct Answer: A

To solve 0.6 - (0.7)(1.4), first calculate the product (0.7)(1.4), which equals 0.98. Subtracting this from 0.6 gives 0.6 - 0.98 = -0.38. Option B (-0.14) results from an incorrect subtraction, possibly miscalculating the product. Option C (-0.42) suggests an error in understanding the subtraction process, likely misapplying the negative sign. Option D (-1.5) is far too low and indicates a misunderstanding of basic arithmetic operations. Thus, the correct calculation leads to -0.38, confirming option A as the accurate answer.

Other Related Questions

For an emergency service call, a plumbing company charges a flat fee of $60 plus $40 an hour. A customer remembers paying at least $200 for an emergency service. Which phrase describes the number of hours the plumbing company was at the service call?
  • A. at most 2 hours
  • B. at most 3.5 hours
  • C. at least 3.5 hours
  • D. at least 2 hours
Correct Answer & Rationale
Correct Answer: C

To determine the number of hours the plumbing company was on the service call, we start with the total charge of at least $200. The charge consists of a flat fee of $60 plus $40 per hour. First, subtract the flat fee from the total: $200 - $60 = $140. Next, divide this by the hourly rate: $140 ÷ $40 = 3.5 hours. This indicates that the service lasted at least 3.5 hours. Option A (at most 2 hours) is incorrect, as 2 hours would only cost $140. Option B (at most 3.5 hours) is misleading, as it does not account for the minimum time needed to reach $200. Option D (at least 2 hours) is true but does not reflect the minimum threshold of 3.5 hours. Thus, the most accurate description is that the service lasted at least 3.5 hours.
An expression for a company's cost to make n bicycles is -0.017n? - 6.8n + 690. An expression for the revenue from selling these n bicycles is 70n. Profit is revenue minus cost. Which is an expression for the profit for making and selling n bicycles?
  • A. -0.017n^2 - 76.8n + 690
  • B. 0.017n^2 + 76.8n - 690
  • C. 0.017n^2 + 63.2n + 690
  • D. -0.017n^2 + 63.2n + 690
Correct Answer & Rationale
Correct Answer: D

To find the profit from selling n bicycles, subtract the cost expression from the revenue expression. The cost is given as -0.017n² - 6.8n + 690, and the revenue is 70n. Calculating profit: Profit = Revenue - Cost = 70n - (-0.017n² - 6.8n + 690) simplifies to 70n + 0.017n² + 6.8n - 690, which results in 0.017n² + 63.2n - 690. Option D, -0.017n² + 63.2n + 690, incorrectly presents the quadratic term with the wrong sign. Options A and B incorrectly combine terms or misrepresent the coefficients. Option C miscalculates the constant term. Thus, only option D maintains the correct profit structure.
How many more tickets did Larry buy than Jim?
  • A. 3
  • B. 12
  • C. 6
  • D. 1
Correct Answer & Rationale
Correct Answer: C

To determine how many more tickets Larry bought than Jim, we need to compare their ticket purchases. If Larry bought 9 tickets and Jim bought 3, the difference is 9 - 3 = 6. Option A (3) is incorrect because it underestimates the difference. Option B (12) is too high, suggesting Larry bought significantly more than he actually did. Option D (1) also miscalculates the difference, indicating a minimal discrepancy. Thus, the accurate difference of 6 aligns with option C, reflecting the true number of tickets Larry purchased over Jim.
Which expression is equivalent to (3a + 4ab - 7b) - (a + 2ab - 4b)?
  • A. 2a + 2ab - 11b
  • B. 2a + 6ab - 11b
  • C. 2a + 2ab - 3b
  • D. 2a + 6ab - 35
Correct Answer & Rationale
Correct Answer: C

To simplify the expression \((3a + 4ab - 7b) - (a + 2ab - 4b)\), start by distributing the negative sign across the second set of parentheses: \[ 3a + 4ab - 7b - a - 2ab + 4b \] Next, combine like terms: - For \(a\): \(3a - a = 2a\) - For \(ab\): \(4ab - 2ab = 2ab\) - For \(b\): \(-7b + 4b = -3b\) This results in the expression \(2a + 2ab - 3b\), matching option C. Option A introduces an incorrect coefficient for \(b\), while option B miscalculates the \(ab\) term. Option D incorrectly combines terms, leading to an erroneous constant. Thus, option C is the only accurate simplification.