Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer.
A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Correct Answer & Rationale
Correct Answer: 583/625
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
Other Related Questions
What is the value of the expression 2j - 7jkm when j = 5, k = -14, and m = -3?
Correct Answer & Rationale
Correct Answer: A
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
On Monday; Alicia buys x shirts at $8 each and y slacks at $25 each. On Wednesday, Alicia returns 2 pairs of slacks. Which expression represents the total value of her purchases?
- A. 8x + 23y
- B. 8x + 25(y - 2)
- C. 8x - 2) + 25y
- D. 8x + 25y - 2
Correct Answer & Rationale
Correct Answer: B
To calculate the total value of Alicia's purchases, we need to account for the cost of shirts and slacks, as well as the return of 2 pairs of slacks. Option B, \(8x + 25(y - 2)\), correctly reflects the initial cost of \(x\) shirts at $8 each and \(y\) slacks at $25 each, while subtracting the cost of the 2 returned slacks, which is \(2 \times 25\). Option A, \(8x + 23y\), incorrectly reduces the price of slacks to $23, which is not stated in the problem. Option C, \(8x - 2 + 25y\), miscalculates by subtracting $2 instead of the cost of the returned slacks. Option D, \(8x + 25y - 2\), also incorrectly subtracts $2 instead of the total cost of the slacks returned.
To calculate the total value of Alicia's purchases, we need to account for the cost of shirts and slacks, as well as the return of 2 pairs of slacks. Option B, \(8x + 25(y - 2)\), correctly reflects the initial cost of \(x\) shirts at $8 each and \(y\) slacks at $25 each, while subtracting the cost of the 2 returned slacks, which is \(2 \times 25\). Option A, \(8x + 23y\), incorrectly reduces the price of slacks to $23, which is not stated in the problem. Option C, \(8x - 2 + 25y\), miscalculates by subtracting $2 instead of the cost of the returned slacks. Option D, \(8x + 25y - 2\), also incorrectly subtracts $2 instead of the total cost of the slacks returned.
On a number line, what is the distance, in units, between 16 and -25
Correct Answer & Rationale
Correct Answer: 41 units
To find the distance between two points on a number line, subtract the smaller number from the larger number. Here, the calculation is |16 - (-25)|, which simplifies to |16 + 25| = |41|. This results in a distance of 41 units. Other options may suggest incorrect calculations. For instance, an answer like 9 units might arise from simply adding the two numbers without considering their positions on the number line, leading to an inaccurate interpretation of distance. Similarly, options like 25 or 16 units misrepresent the actual distance by not accounting for both numbers' magnitudes relative to zero.
To find the distance between two points on a number line, subtract the smaller number from the larger number. Here, the calculation is |16 - (-25)|, which simplifies to |16 + 25| = |41|. This results in a distance of 41 units. Other options may suggest incorrect calculations. For instance, an answer like 9 units might arise from simply adding the two numbers without considering their positions on the number line, leading to an inaccurate interpretation of distance. Similarly, options like 25 or 16 units misrepresent the actual distance by not accounting for both numbers' magnitudes relative to zero.
Fix It Fast is an auto repair shop that employs 10 mechanics. Each day, the shop owner randomly picks 1 mechanic to receive a free lunch. What is the probability the shop owner will pick the same mechanic to receive a free lunch 2 days in a row?
- A. 1\20
- B. 1/100
- C. 1\5
- D. 1\10
Correct Answer & Rationale
Correct Answer: B
To determine the probability of picking the same mechanic two days in a row, we start by recognizing that there are 10 mechanics. On the first day, any mechanic can be chosen, which does not affect the overall probability. On the second day, to pick the same mechanic again, there is only 1 favorable outcome (the chosen mechanic) out of 10 possible mechanics. Thus, the probability of selecting that same mechanic on the second day is 1/10. Since the first day's choice does not influence this, we multiply the probabilities: (1/10) * (1/10) = 1/100. - Option A (1/20) is incorrect as it miscalculates the favorable outcomes. - Option C (1/5) incorrectly assumes a higher likelihood without considering the second day's requirement. - Option D (1/10) only reflects the probability of picking a mechanic on day two, not the two-day scenario.
To determine the probability of picking the same mechanic two days in a row, we start by recognizing that there are 10 mechanics. On the first day, any mechanic can be chosen, which does not affect the overall probability. On the second day, to pick the same mechanic again, there is only 1 favorable outcome (the chosen mechanic) out of 10 possible mechanics. Thus, the probability of selecting that same mechanic on the second day is 1/10. Since the first day's choice does not influence this, we multiply the probabilities: (1/10) * (1/10) = 1/100. - Option A (1/20) is incorrect as it miscalculates the favorable outcomes. - Option C (1/5) incorrectly assumes a higher likelihood without considering the second day's requirement. - Option D (1/10) only reflects the probability of picking a mechanic on day two, not the two-day scenario.