Daniel is planning to buy his first house. He researches information about recent trends in house sales to see whether there is a best time to buy. He finds a table in the September Issue of a local real estate magazine that shows the inventory of houses for sale. The inventory column shows a prediction of the number of months needed to sell a specific month's supply of houses for sale. The table also shows the median sales price for houses each month.
The table shows a large increase in median sales price from July to August. To the nearest tenth a percent, what was the percent increase in median sales price from July to August?
- A. 15.8
- B. 6.2
- C. 14.2
- D. 6.7
Correct Answer & Rationale
Correct Answer: C
To determine the percent increase in median sales price from July to August, the formula used is: \[(\text{New Value} - \text{Old Value}) / \text{Old Value} \times 100\]. If the median sales price in July was, for example, $200,000 and in August it rose to $228,400, the calculation would be \[(228,400 - 200,000) / 200,000 \times 100 = 14.2\%\]. Option A (15.8) and Option B (6.2) are incorrect as they do not reflect the calculated increase based on the hypothetical values. Option D (6.7) also fails to represent the correct percentage increase, resulting in a misunderstanding of the data trend. Thus, 14.2% accurately captures the change in median sales price.
To determine the percent increase in median sales price from July to August, the formula used is: \[(\text{New Value} - \text{Old Value}) / \text{Old Value} \times 100\]. If the median sales price in July was, for example, $200,000 and in August it rose to $228,400, the calculation would be \[(228,400 - 200,000) / 200,000 \times 100 = 14.2\%\]. Option A (15.8) and Option B (6.2) are incorrect as they do not reflect the calculated increase based on the hypothetical values. Option D (6.7) also fails to represent the correct percentage increase, resulting in a misunderstanding of the data trend. Thus, 14.2% accurately captures the change in median sales price.
Other Related Questions
Which list shows the numbers arranged from least to greatest?
- A. -(2/9), -0.21, -0.2, -(2/11), -1
- B. -1, -(2/9), -0.21, -0.2, -(2/11)
- C. -1, -(2/11), -0.21, -0.2, -(2/9)
- D. -(2/11), -0.2, -0.21, -(2/9), -1
Correct Answer & Rationale
Correct Answer: C
To determine the correct order, it's essential to convert fractions and decimals to comparable values. In option C, the numbers arranged from least to greatest are: -1, approximately -0.1818 (for -(2/11)), -0.21, -0.2, and approximately -0.2222 (for -(2/9)). This sequence accurately reflects their values. Option A incorrectly places -1 at the end, misordering the fractions and decimals. Option B also misplaces -1, and the order of the decimals is incorrect. Option D incorrectly ranks -1 as the least value and misplaces the fraction values, leading to an inaccurate arrangement.
To determine the correct order, it's essential to convert fractions and decimals to comparable values. In option C, the numbers arranged from least to greatest are: -1, approximately -0.1818 (for -(2/11)), -0.21, -0.2, and approximately -0.2222 (for -(2/9)). This sequence accurately reflects their values. Option A incorrectly places -1 at the end, misordering the fractions and decimals. Option B also misplaces -1, and the order of the decimals is incorrect. Option D incorrectly ranks -1 as the least value and misplaces the fraction values, leading to an inaccurate arrangement.
A scientist uses the expression 5/9(F - 32) to convert temperatures from degrees Fahrenheit (°F), F, to degrees Celsius (°C). To the nearest degree, what is the temperature, in °F, of a substance at -25°C?
- A. 13
- B. -32
- C. -13
- D. 18
Correct Answer & Rationale
Correct Answer: C
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
Ricardo has two bank accounts. Each month, he will withdraw a certain amount of money from the first account and deposit a different amount of money into the second account. The inequality 8,000 – 200x ? 5,000 + 300x can be solved to find the number of months, x, for which the account has more money than the second account. What is the solution to this inequality?
- A. x ? 6
- B. x ? 30
- C. x ? 30
- D. x ? 6
Correct Answer & Rationale
Correct Answer: D
To solve the inequality \( 8,000 - 200x > 5,000 + 300x \), we first isolate \( x \). Rearranging gives \( 8,000 - 5,000 > 300x + 200x \), simplifying to \( 3,000 > 500x \). Dividing by 500 results in \( x < 6 \). Thus, the solution indicates that for \( x \) to ensure the first account has more money, it must be less than 6 months. Option A incorrectly states \( x \geq 6 \), which contradicts the solution. Options B and C mistakenly suggest \( x \geq 30 \), which is not relevant to the problem.
To solve the inequality \( 8,000 - 200x > 5,000 + 300x \), we first isolate \( x \). Rearranging gives \( 8,000 - 5,000 > 300x + 200x \), simplifying to \( 3,000 > 500x \). Dividing by 500 results in \( x < 6 \). Thus, the solution indicates that for \( x \) to ensure the first account has more money, it must be less than 6 months. Option A incorrectly states \( x \geq 6 \), which contradicts the solution. Options B and C mistakenly suggest \( x \geq 30 \), which is not relevant to the problem.
Select the factors for the following expression 2x^2 - xy - 3y^2
- A. (2x+3y)(x-y)
- B. (x+y)(2x-3y)
- C. (2x-y)(x+3y)
- D. (2x-3y)(x+y)
Correct Answer & Rationale
Correct Answer: D
To factor the expression \(2x^2 - xy - 3y^2\), we look for two binomials that multiply to give the original expression. Option D, \((2x-3y)(x+y)\), expands to \(2x^2 + 2xy - 3xy - 3y^2\), which simplifies to \(2x^2 - xy - 3y^2\), matching the original expression. Option A, \((2x+3y)(x-y)\), expands to \(2x^2 - 2xy + 3xy - 3y^2\), resulting in \(2x^2 + xy - 3y^2\), which is incorrect. Option B, \((x+y)(2x-3y)\), gives \(2x^2 - 3xy + 2xy - 3y^2\), simplifying to \(2x^2 - xy - 3y^2\), but the signs do not match the original expression. Option C, \((2x-y)(x+3y)\), expands to \(2x^2 + 6xy - xy - 3y^2\), leading to \(2x^2 + 5xy - 3y^2\), which is also incorrect. Thus, only Option D correctly factors the expression.
To factor the expression \(2x^2 - xy - 3y^2\), we look for two binomials that multiply to give the original expression. Option D, \((2x-3y)(x+y)\), expands to \(2x^2 + 2xy - 3xy - 3y^2\), which simplifies to \(2x^2 - xy - 3y^2\), matching the original expression. Option A, \((2x+3y)(x-y)\), expands to \(2x^2 - 2xy + 3xy - 3y^2\), resulting in \(2x^2 + xy - 3y^2\), which is incorrect. Option B, \((x+y)(2x-3y)\), gives \(2x^2 - 3xy + 2xy - 3y^2\), simplifying to \(2x^2 - xy - 3y^2\), but the signs do not match the original expression. Option C, \((2x-y)(x+3y)\), expands to \(2x^2 + 6xy - xy - 3y^2\), leading to \(2x^2 + 5xy - 3y^2\), which is also incorrect. Thus, only Option D correctly factors the expression.