Which of the following best explains why an ice skater is able to coast on ice for a long distance without pushing off in a straight line across the ice?
- A. The force of friction on the blades of the skates is greater than the force of friction on the ice.
- B. The force of friction on the blades of the skates is less than the force of friction on the ice.
- C. The ice exerts a constant forward force on the skater.
- D. The buoyant force on the blades of the skates is greater than the weight of the skater.
Correct Answer & Rationale
Correct Answer: B
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
Other Related Questions
A student is conducting an experiment to determine how the temperature of water affects the rate at which sugar dissolves. The student uses four beakers with the same amount of water at different temperatures: 20C, 40C, 60C, and 80C. The student adds the same amount of sugar to each beaker and stirs for the same length of time. Which of the following is the independent variable in this experiment?
- A. The amount of sugar added to each beaker.
- B. The temperature of the water in each beaker.
- C. The time it takes for the sugar to dissolve.
- D. The amount of stirring done in each beaker.
Correct Answer & Rationale
Correct Answer: B
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.
An astronaut travels to the Moon, where the magnitude of the force of gravity is one-sixth the magnitude of the force of gravity on Earth. On the Moon, which of the following is true?
- A. The astronaut's mass is one-sixth of his mass on Earth.
- B. The astronaut's weight is one-sixth of his weight on Earth.
- C. The astronaut's mass is six times his mass on Earth.
- D. The astronaut's weight is six times his weight on Earth.
Correct Answer & Rationale
Correct Answer: B
An astronaut's mass remains constant regardless of location; therefore, option A is incorrect as mass on the Moon is the same as on Earth. Option C is also incorrect because mass does not change based on gravitational force. Option D misrepresents weight; weight is dependent on gravity, and since the Moon's gravity is one-sixth that of Earth's, the astronaut's weight is one-sixth, not six times. Thus, option B accurately reflects that the astronaut's weight on the Moon is one-sixth of his weight on Earth, aligning with the relationship between weight and gravitational force.
An astronaut's mass remains constant regardless of location; therefore, option A is incorrect as mass on the Moon is the same as on Earth. Option C is also incorrect because mass does not change based on gravitational force. Option D misrepresents weight; weight is dependent on gravity, and since the Moon's gravity is one-sixth that of Earth's, the astronaut's weight is one-sixth, not six times. Thus, option B accurately reflects that the astronaut's weight on the Moon is one-sixth of his weight on Earth, aligning with the relationship between weight and gravitational force.
Earth's diameter is approximately 12,700 kilometers. Which of the following layers is located approximately 6,000 kilometers beneath Earth's surface and is composed primarily of iron and nickel?
- A. The core
- B. The crust
- C. The lithosphere
- D. The mantle
Correct Answer & Rationale
Correct Answer: A
The core, located about 6,000 kilometers beneath Earth's surface, is primarily composed of iron and nickel, making it the densest layer of the planet. The crust, option B, is the outermost layer and is much shallower, averaging only about 30 kilometers thick. Option C, the lithosphere, includes the crust and the uppermost part of the mantle, but it does not reach anywhere near 6,000 kilometers deep. The mantle, option D, lies between the crust and the core, extending to about 2,900 kilometers down, but it is primarily composed of silicate minerals, not iron and nickel.
The core, located about 6,000 kilometers beneath Earth's surface, is primarily composed of iron and nickel, making it the densest layer of the planet. The crust, option B, is the outermost layer and is much shallower, averaging only about 30 kilometers thick. Option C, the lithosphere, includes the crust and the uppermost part of the mantle, but it does not reach anywhere near 6,000 kilometers deep. The mantle, option D, lies between the crust and the core, extending to about 2,900 kilometers down, but it is primarily composed of silicate minerals, not iron and nickel.
Recycling will best benefit the environment by minimizing which THREE of the following?
- A. The consumption of raw materials
- B. The incineration of materials in combustion for energy
- C. The amount of materials in landfills
- D. The reuse of materials in new products
Correct Answer & Rationale
Correct Answer: A,B,C
Recycling effectively minimizes the consumption of raw materials (A) by reusing existing materials, reducing the need for new resource extraction. It also decreases the amount of materials sent to landfills (C), which helps mitigate environmental issues associated with waste accumulation. Additionally, recycling reduces the incineration of materials for energy (B), lowering greenhouse gas emissions and air pollution. Option D, the reuse of materials in new products, is not minimized by recycling; rather, recycling facilitates this process. Therefore, A, B, and C are the primary benefits of recycling for environmental protection.
Recycling effectively minimizes the consumption of raw materials (A) by reusing existing materials, reducing the need for new resource extraction. It also decreases the amount of materials sent to landfills (C), which helps mitigate environmental issues associated with waste accumulation. Additionally, recycling reduces the incineration of materials for energy (B), lowering greenhouse gas emissions and air pollution. Option D, the reuse of materials in new products, is not minimized by recycling; rather, recycling facilitates this process. Therefore, A, B, and C are the primary benefits of recycling for environmental protection.