Which of the following is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation?
- A. An observation
- B. A variable
- C. An experiment
- D. A hypothesis
Correct Answer & Rationale
Correct Answer: D
A hypothesis is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation. It serves as a foundation for scientific inquiry. Option A, an observation, refers to data gathered through the senses and does not propose an explanation. Option B, a variable, is a factor that can change in an experiment but does not itself explain phenomena. Option C, an experiment, is a method used to test a hypothesis but is not a statement proposing an explanation. Thus, only a hypothesis encapsulates a testable explanation.
A hypothesis is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation. It serves as a foundation for scientific inquiry. Option A, an observation, refers to data gathered through the senses and does not propose an explanation. Option B, a variable, is a factor that can change in an experiment but does not itself explain phenomena. Option C, an experiment, is a method used to test a hypothesis but is not a statement proposing an explanation. Thus, only a hypothesis encapsulates a testable explanation.
Other Related Questions
The speed of light in empty space, that is, a vacuum, is 300,000 km/s. The speed of sound in empty space is:
- B. greater than 0 but less than 300,000 km/s
- C. 300,000 km/s
- D. greater than 300,000 km/s
Correct Answer & Rationale
Correct Answer: A
The speed of sound requires a medium, such as air or water, to propagate; it cannot travel through a vacuum. Therefore, the speed of sound in empty space is effectively zero. Option B suggests that the speed of sound is greater than 0 but less than 300,000 km/s, which is incorrect because sound cannot exist in a vacuum. Option C states it is 300,000 km/s, which misrepresents sound's nature, as this speed is specific to light. Option D claims it is greater than 300,000 km/s, which is impossible since sound cannot travel in a vacuum at all. Thus, the only valid conclusion is that the speed of sound in empty space is zero.
The speed of sound requires a medium, such as air or water, to propagate; it cannot travel through a vacuum. Therefore, the speed of sound in empty space is effectively zero. Option B suggests that the speed of sound is greater than 0 but less than 300,000 km/s, which is incorrect because sound cannot exist in a vacuum. Option C states it is 300,000 km/s, which misrepresents sound's nature, as this speed is specific to light. Option D claims it is greater than 300,000 km/s, which is impossible since sound cannot travel in a vacuum at all. Thus, the only valid conclusion is that the speed of sound in empty space is zero.
A teacher is introducing the geologic time scale to third-grade students. She tells them that the entire history of Earth, from its formation to the present day, was 24 hours long, with 12:00 midnight representing the time of the formation of Earth and 12:00 midnight the following night representing the present day. About what time did humans appear in this 24-hour time scale?
- A. 11:58 PM
- B. 9:00 PM
- C. 6:00 PM
- D. 1:00 PM
Correct Answer & Rationale
Correct Answer: A
In this 24-hour analogy of Earth's history, humans appeared very recently, approximately 200,000 years ago, which is just a fraction of the total time. This corresponds to 11:58 PM, indicating that humans emerged just two minutes before the "midnight" representing the present day. Option B (9:00 PM) suggests a much earlier appearance, which does not align with the scientific timeline of human evolution. Option C (6:00 PM) is even earlier, placing humans in a time when dinosaurs were still prominent. Option D (1:00 PM) is far too early, as it would imply humans existed when early mammals were just beginning to evolve. Thus, only 11:58 PM accurately reflects the brief time humans have existed in the context of Earth's history.
In this 24-hour analogy of Earth's history, humans appeared very recently, approximately 200,000 years ago, which is just a fraction of the total time. This corresponds to 11:58 PM, indicating that humans emerged just two minutes before the "midnight" representing the present day. Option B (9:00 PM) suggests a much earlier appearance, which does not align with the scientific timeline of human evolution. Option C (6:00 PM) is even earlier, placing humans in a time when dinosaurs were still prominent. Option D (1:00 PM) is far too early, as it would imply humans existed when early mammals were just beginning to evolve. Thus, only 11:58 PM accurately reflects the brief time humans have existed in the context of Earth's history.
The preceding figure represents a cloud that has formed in the atmosphere above Earth's surface. Which of the following diagrams best illustrates the arrangement of charges in the cloud and on Earth's surface just before a cloud-to-ground lightning strike?
- A. Cloud: top (+), middle (-), bottom (+); Ground: (-)
- B. Cloud: top (+), middle (+), bottom (-); Ground: (+)
- C. Cloud: top (-), middle (+), bottom (+); Ground: (-)
- D. Cloud: top (+), middle (-), bottom (-); Ground: (+)
Correct Answer & Rationale
Correct Answer: D
In a thunderstorm, clouds typically develop a charge separation where the upper region becomes positively charged and the lower region negatively charged. This charge distribution is crucial for lightning formation. Option D accurately represents this arrangement: the top of the cloud is positively charged, the middle is negatively charged, and the bottom is also negatively charged, while the ground becomes positively charged in response to the cloud's negative charge. Option A incorrectly places a positive charge at the bottom of the cloud, which does not align with typical charge distributions. Option B misrepresents the charges by having two positive regions in the cloud, which is unlikely. Option C also fails by placing the top of the cloud negatively charged, contradicting the established understanding of charge distribution in storm clouds.
In a thunderstorm, clouds typically develop a charge separation where the upper region becomes positively charged and the lower region negatively charged. This charge distribution is crucial for lightning formation. Option D accurately represents this arrangement: the top of the cloud is positively charged, the middle is negatively charged, and the bottom is also negatively charged, while the ground becomes positively charged in response to the cloud's negative charge. Option A incorrectly places a positive charge at the bottom of the cloud, which does not align with typical charge distributions. Option B misrepresents the charges by having two positive regions in the cloud, which is unlikely. Option C also fails by placing the top of the cloud negatively charged, contradicting the established understanding of charge distribution in storm clouds.
Fossilized remains of prehistoric organisms are typically found in which of the following types of rock?
- A. Metamorphic rock
- B. Igneous rock
- C. Sedimentary rock
- D. Molten rock
Correct Answer & Rationale
Correct Answer: C
Fossilized remains are most commonly found in sedimentary rock, which forms from the accumulation of sediment and organic material in layers. This environment allows for the preservation of organisms. Metamorphic rock (A) forms under high pressure and temperature, altering existing rocks and typically destroying fossils. Igneous rock (B) is created from cooled magma or lava, which does not preserve organic material. Molten rock (D) refers to rock in a liquid state, which cannot contain fossils as it is not solidified. Thus, sedimentary rock is the ideal environment for fossil preservation.
Fossilized remains are most commonly found in sedimentary rock, which forms from the accumulation of sediment and organic material in layers. This environment allows for the preservation of organisms. Metamorphic rock (A) forms under high pressure and temperature, altering existing rocks and typically destroying fossils. Igneous rock (B) is created from cooled magma or lava, which does not preserve organic material. Molten rock (D) refers to rock in a liquid state, which cannot contain fossils as it is not solidified. Thus, sedimentary rock is the ideal environment for fossil preservation.