A manufacturing plant makes dog toys in the shape of a sphere. The diameter of each dog toy is 3 inches. What is the surface area, in square inches of each dog toy?
- A. 113.04
- B. 75.36
- C. 28.26
- D. 37.68
Correct Answer & Rationale
Correct Answer: C
To find the surface area of a sphere, the formula used is \(4\pi r^2\). Given the diameter of the dog toy is 3 inches, the radius \(r\) is half of that, which is 1.5 inches. Plugging this into the formula: \[ Surface Area = 4\pi (1.5)^2 = 4\pi (2.25) \approx 28.26 \text{ square inches.} \] Option A (113.04) results from incorrectly using the diameter instead of the radius. Option B (75.36) arises from miscalculating the radius or misapplying the formula. Option D (37.68) likely results from a miscalculation of the surface area formula, possibly using an incorrect value for \(r\).
To find the surface area of a sphere, the formula used is \(4\pi r^2\). Given the diameter of the dog toy is 3 inches, the radius \(r\) is half of that, which is 1.5 inches. Plugging this into the formula: \[ Surface Area = 4\pi (1.5)^2 = 4\pi (2.25) \approx 28.26 \text{ square inches.} \] Option A (113.04) results from incorrectly using the diameter instead of the radius. Option B (75.36) arises from miscalculating the radius or misapplying the formula. Option D (37.68) likely results from a miscalculation of the surface area formula, possibly using an incorrect value for \(r\).
Other Related Questions
Multiply (5x - 1)(5x - 1)
- A. 25x^2 + 1
- B. 25x^2 - 1
- C. 25x^2 - 2x + 1
- D. 25x^2 - 10x + 1
Correct Answer & Rationale
Correct Answer: D
To find the product of (5x - 1)(5x - 1), we can use the formula for squaring a binomial, which states that (a - b)² = a² - 2ab + b². Here, a = 5x and b = 1. Calculating this gives: - a² = (5x)² = 25x² - 2ab = 2(5x)(1) = 10x - b² = 1² = 1 Thus, the expanded form is 25x² - 10x + 1, matching option D. Option A (25x² + 1) incorrectly omits the linear term. Option B (25x² - 1) miscalculates the constant term. Option C (25x² - 2x + 1) incorrectly computes the coefficient of the x term. Each of these options fails to accurately reflect the multiplication of the binomials.
To find the product of (5x - 1)(5x - 1), we can use the formula for squaring a binomial, which states that (a - b)² = a² - 2ab + b². Here, a = 5x and b = 1. Calculating this gives: - a² = (5x)² = 25x² - 2ab = 2(5x)(1) = 10x - b² = 1² = 1 Thus, the expanded form is 25x² - 10x + 1, matching option D. Option A (25x² + 1) incorrectly omits the linear term. Option B (25x² - 1) miscalculates the constant term. Option C (25x² - 2x + 1) incorrectly computes the coefficient of the x term. Each of these options fails to accurately reflect the multiplication of the binomials.
Which graph represents the equation x - 2y = 4?
- A. M-58A.png
- B. M-58B.png
- C. M-58C.png
- D. M-58D.png
Correct Answer & Rationale
Correct Answer: A
To determine which graph represents the equation \( x - 2y = 4 \), we can rearrange it into slope-intercept form: \( y = \frac{1}{2}x - 2 \). This indicates a slope of \( \frac{1}{2} \) and a y-intercept at \( -2 \). Option A accurately reflects these characteristics, showing a line that rises gradually and crosses the y-axis at \( -2 \). Options B, C, and D do not have the correct slope or y-intercept. B has a steeper slope, C slopes downward, and D does not intersect the y-axis at the correct point. Thus, only Option A is consistent with the equation's graph.
To determine which graph represents the equation \( x - 2y = 4 \), we can rearrange it into slope-intercept form: \( y = \frac{1}{2}x - 2 \). This indicates a slope of \( \frac{1}{2} \) and a y-intercept at \( -2 \). Option A accurately reflects these characteristics, showing a line that rises gradually and crosses the y-axis at \( -2 \). Options B, C, and D do not have the correct slope or y-intercept. B has a steeper slope, C slopes downward, and D does not intersect the y-axis at the correct point. Thus, only Option A is consistent with the equation's graph.
Type your answer in the box. You may use numbers, a decimal point (.), and/or a negative sign (-) in your answer.
A company received a shipment of 8 boxes of metal brackets.
• There are 20 metal brackets in each box.
• The total weight of the shipment is 48 pounds.
What is the weight, in pounds, of each metal bracket?
Correct Answer & Rationale
Correct Answer: 0.3
To find the weight of each metal bracket, first calculate the total number of brackets by multiplying the number of boxes (8) by the number of brackets per box (20), resulting in 160 brackets. Next, divide the total weight of the shipment (48 pounds) by the total number of brackets (160). This calculation yields a weight of 0.3 pounds per bracket. Other options may include numbers that misrepresent the division or assume incorrect values for the total brackets or shipment weight. For example, using a weight of 1 pound per bracket would imply only 48 brackets, which contradicts the initial information provided.
To find the weight of each metal bracket, first calculate the total number of brackets by multiplying the number of boxes (8) by the number of brackets per box (20), resulting in 160 brackets. Next, divide the total weight of the shipment (48 pounds) by the total number of brackets (160). This calculation yields a weight of 0.3 pounds per bracket. Other options may include numbers that misrepresent the division or assume incorrect values for the total brackets or shipment weight. For example, using a weight of 1 pound per bracket would imply only 48 brackets, which contradicts the initial information provided.
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer.
A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Correct Answer & Rationale
Correct Answer: 583/625
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.