Acceleration, a, in meters per second squared (m/s^2), is found by the formula a = (V2 - V1)/t where V1, is the beginning velocity, V2 is the end velocity, and t is time. What is the acceleration, in m/s^2, of an object with a beginning velocity of 14 m/s and end velocity of 8 m/s over a time of 4 seconds?
- A. 1.5
- B. -1.5
- C. 4.5
- D. -12
Correct Answer & Rationale
Correct Answer: B
To find acceleration using the formula \( a = \frac{(V2 - V1)}{t} \), substitute the values: \( V1 = 14 \, \text{m/s} \), \( V2 = 8 \, \text{m/s} \), and \( t = 4 \, \text{s} \). This results in \( a = \frac{(8 - 14)}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference and time. Option D (-12) incorrectly computes the acceleration by misapplying the formula or misinterpreting the values. Thus, the only accurate calculation reflects a deceleration, resulting in -1.5 m/s².
To find acceleration using the formula \( a = \frac{(V2 - V1)}{t} \), substitute the values: \( V1 = 14 \, \text{m/s} \), \( V2 = 8 \, \text{m/s} \), and \( t = 4 \, \text{s} \). This results in \( a = \frac{(8 - 14)}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference and time. Option D (-12) incorrectly computes the acceleration by misapplying the formula or misinterpreting the values. Thus, the only accurate calculation reflects a deceleration, resulting in -1.5 m/s².
Other Related Questions
At a local bank, certificates of deposit (CDs) mature every 9 months. At another bank, CDs mature every 12 months. If CDs are purchased on the same day at each bank and are renewed when they mature, what is the least number of months that will pass before the two banks' CDs are mature at the same time?
- A. 72
- B. 36
- C. 108
- D. 3
Correct Answer & Rationale
Correct Answer: B
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
An expression for a company's cost to make n bicycles is -0.017n? - 6.8n + 690. An expression for the revenue from selling these n bicycles is 70n. Profit is revenue minus cost. Which is an expression for the profit for making and selling n bicycles?
- A. -0.017n^2 - 76.8n + 690
- B. 0.017n^2 + 76.8n - 690
- C. 0.017n^2 + 63.2n + 690
- D. -0.017n^2 + 63.2n + 690
Correct Answer & Rationale
Correct Answer: D
To find the profit from selling n bicycles, subtract the cost expression from the revenue expression. The cost is given as -0.017n² - 6.8n + 690, and the revenue is 70n. Calculating profit: Profit = Revenue - Cost = 70n - (-0.017n² - 6.8n + 690) simplifies to 70n + 0.017n² + 6.8n - 690, which results in 0.017n² + 63.2n - 690. Option D, -0.017n² + 63.2n + 690, incorrectly presents the quadratic term with the wrong sign. Options A and B incorrectly combine terms or misrepresent the coefficients. Option C miscalculates the constant term. Thus, only option D maintains the correct profit structure.
To find the profit from selling n bicycles, subtract the cost expression from the revenue expression. The cost is given as -0.017n² - 6.8n + 690, and the revenue is 70n. Calculating profit: Profit = Revenue - Cost = 70n - (-0.017n² - 6.8n + 690) simplifies to 70n + 0.017n² + 6.8n - 690, which results in 0.017n² + 63.2n - 690. Option D, -0.017n² + 63.2n + 690, incorrectly presents the quadratic term with the wrong sign. Options A and B incorrectly combine terms or misrepresent the coefficients. Option C miscalculates the constant term. Thus, only option D maintains the correct profit structure.
The daily cost, C(x), tor a company to produce x microscopes is given by the equation C(x) = 300 + 10.5x. What is the cost of producing 50 microscopes?
- A. $41,250
- B. $360.50
- C. $15,525
- D. $825
Correct Answer & Rationale
Correct Answer: D
To find the cost of producing 50 microscopes, substitute x = 50 into the cost equation C(x) = 300 + 10.5x. This yields C(50) = 300 + 10.5(50), resulting in C(50) = 300 + 525 = 825. Thus, the cost for 50 microscopes is $825. Option A ($41,250) is incorrect as it likely results from a miscalculation or misunderstanding of the equation. Option B ($360.50) underestimates the production cost by omitting the correct multiplication factor. Option C ($15,525) suggests an error in the calculation, possibly misinterpreting the coefficients in the equation.
To find the cost of producing 50 microscopes, substitute x = 50 into the cost equation C(x) = 300 + 10.5x. This yields C(50) = 300 + 10.5(50), resulting in C(50) = 300 + 525 = 825. Thus, the cost for 50 microscopes is $825. Option A ($41,250) is incorrect as it likely results from a miscalculation or misunderstanding of the equation. Option B ($360.50) underestimates the production cost by omitting the correct multiplication factor. Option C ($15,525) suggests an error in the calculation, possibly misinterpreting the coefficients in the equation.
((5^3 * 2^4)^2)(5^(-2) * 2^5)
- A. 5^3 * 2^11
- B. 5^(-12) * 2^40
- C. 5^4 * 2^13
- D. (-5)^8 * 2^13
Correct Answer & Rationale
Correct Answer: C
To simplify the expression \(((5^3 * 2^4)^2)(5^{-2} * 2^5)\), first apply the power of a product rule. This gives \(5^{6} * 2^{8}\) from the first part. Next, combine this with the second part, \(5^{-2} * 2^{5}\). Adding the exponents for the base 5: \(6 + (-2) = 4\). For base 2: \(8 + 5 = 13\). Thus, the final expression simplifies to \(5^4 * 2^{13}\). Option A is incorrect as it miscalculates the exponents. Option B has incorrect exponents and signs. Option D introduces an unnecessary negative sign and does not match the simplified expression.
To simplify the expression \(((5^3 * 2^4)^2)(5^{-2} * 2^5)\), first apply the power of a product rule. This gives \(5^{6} * 2^{8}\) from the first part. Next, combine this with the second part, \(5^{-2} * 2^{5}\). Adding the exponents for the base 5: \(6 + (-2) = 4\). For base 2: \(8 + 5 = 13\). Thus, the final expression simplifies to \(5^4 * 2^{13}\). Option A is incorrect as it miscalculates the exponents. Option B has incorrect exponents and signs. Option D introduces an unnecessary negative sign and does not match the simplified expression.