If the length of a rectangle is increased by 30% and the width of the same rectangle is decreased by 30%, what is the effect on the area of the rectangle?
- A. It is increased by 60%.
- B. It is unchanged.
- C. It is decreased by 15%.
- D. It is decreased by 9%.
Correct Answer & Rationale
Correct Answer: D
Increasing the length of a rectangle by 30% results in a new length of 1.3L, while decreasing the width by 30% gives a new width of 0.7W. The new area can be calculated as A' = (1.3L)(0.7W) = 0.91LW, indicating a decrease in area. Option A is incorrect because a 60% increase does not occur; the area actually decreases. Option B is wrong as the area changes due to the modifications in dimensions. Option C suggests a decrease of 15%, which miscalculates the area change. The area decreases by 9%, confirming the effect of the opposing percentage changes in length and width.
Increasing the length of a rectangle by 30% results in a new length of 1.3L, while decreasing the width by 30% gives a new width of 0.7W. The new area can be calculated as A' = (1.3L)(0.7W) = 0.91LW, indicating a decrease in area. Option A is incorrect because a 60% increase does not occur; the area actually decreases. Option B is wrong as the area changes due to the modifications in dimensions. Option C suggests a decrease of 15%, which miscalculates the area change. The area decreases by 9%, confirming the effect of the opposing percentage changes in length and width.
Other Related Questions
If |x|+|y| = 4 and x ≠y, then x CANNOT be equal to
- A. 2
- C. -2
- D. -5
Correct Answer & Rationale
Correct Answer: D
The equation |x| + |y| = 4 defines a diamond-shaped region in the coordinate plane, where the sum of the absolute values of x and y equals 4. Option A (2) is possible since |2| + |y| = 4 allows y to be 2 or -2. Option C (-2) is also valid, as |-2| + |y| = 4 permits y to be 2 or -2. Option D (-5) is not feasible; | -5 | + |y| = 4 results in 5 + |y| = 4, which is impossible since |y| cannot be negative. Thus, -5 cannot satisfy the given equation while ensuring x ≠ y.
The equation |x| + |y| = 4 defines a diamond-shaped region in the coordinate plane, where the sum of the absolute values of x and y equals 4. Option A (2) is possible since |2| + |y| = 4 allows y to be 2 or -2. Option C (-2) is also valid, as |-2| + |y| = 4 permits y to be 2 or -2. Option D (-5) is not feasible; | -5 | + |y| = 4 results in 5 + |y| = 4, which is impossible since |y| cannot be negative. Thus, -5 cannot satisfy the given equation while ensuring x ≠ y.
A salesperson's commission is k percent of the selling price of a car. Which of the following represents the commission, in dollars, on 2 cars that sold for $14,000 each?
- A. 280k
- B. 28,000k
- C. 14,000/(100+2k)
- D. (28,000+k)/100
Correct Answer & Rationale
Correct Answer: A
To determine the commission on 2 cars sold for $14,000 each, first calculate the total selling price: 2 × $14,000 = $28,000. The commission, being k percent of this total, is expressed as (k/100) × $28,000, which simplifies to $280k. Option B, 28,000k, incorrectly suggests the commission is k percent of the total without dividing by 100. Option C, 14,000/(100+2k), misrepresents the calculation entirely by altering the formula. Option D, (28,000+k)/100, incorrectly adds k to the total selling price before calculating the percentage, which is not aligned with commission calculation principles.
To determine the commission on 2 cars sold for $14,000 each, first calculate the total selling price: 2 × $14,000 = $28,000. The commission, being k percent of this total, is expressed as (k/100) × $28,000, which simplifies to $280k. Option B, 28,000k, incorrectly suggests the commission is k percent of the total without dividing by 100. Option C, 14,000/(100+2k), misrepresents the calculation entirely by altering the formula. Option D, (28,000+k)/100, incorrectly adds k to the total selling price before calculating the percentage, which is not aligned with commission calculation principles.
Valentina attends several meetings each day, as shown in the table below. Which of the following describes this pattern?
- A. The number of meetings increases by the same amount each day.
- B. The number of meetings decreases by the same amount each day.
- C. Each day, the number of meetings increases by the same percent over the previous day's number of meetings.
- D. Each day, the number of meetings decreases by the same percent over the previous day's number of meetings.
Correct Answer & Rationale
Correct Answer: C
The pattern of Valentina's meetings indicates that the number of meetings increases by a consistent percentage each day, reflecting exponential growth. This is evident when comparing the daily totals, which show a proportional rise rather than a fixed increase. Option A is incorrect because it suggests a linear growth, where the same number of meetings is added daily, which is not observed. Option B implies a consistent decrease, which contradicts the observed increase in meetings. Option D also misrepresents the data by suggesting a percentage decrease, which does not align with the trend of increasing meetings.
The pattern of Valentina's meetings indicates that the number of meetings increases by a consistent percentage each day, reflecting exponential growth. This is evident when comparing the daily totals, which show a proportional rise rather than a fixed increase. Option A is incorrect because it suggests a linear growth, where the same number of meetings is added daily, which is not observed. Option B implies a consistent decrease, which contradicts the observed increase in meetings. Option D also misrepresents the data by suggesting a percentage decrease, which does not align with the trend of increasing meetings.
For how many values of k is (x, y) = (k, -k) a solution to the equation 2x +2y = 0?
- A. None
- B. One
- C. Two
- D. More than two
Correct Answer & Rationale
Correct Answer: D
To determine how many values of \( k \) make \( (x, y) = (k, -k) \) a solution to the equation \( 2x + 2y = 0 \), substitute \( x \) and \( y \) into the equation. This gives \( 2k + 2(-k) = 0 \), which simplifies to \( 0 = 0 \). This statement is always true, meaning any value of \( k \) satisfies the equation. Option A (None) is incorrect; there are indeed solutions. Option B (One) is also wrong since infinitely many values of \( k \) work. Option C (Two) is insufficient, as there are not just two but infinitely many solutions. Hence, the correct interpretation is that there are more than two values of \( k \) that satisfy the equation.
To determine how many values of \( k \) make \( (x, y) = (k, -k) \) a solution to the equation \( 2x + 2y = 0 \), substitute \( x \) and \( y \) into the equation. This gives \( 2k + 2(-k) = 0 \), which simplifies to \( 0 = 0 \). This statement is always true, meaning any value of \( k \) satisfies the equation. Option A (None) is incorrect; there are indeed solutions. Option B (One) is also wrong since infinitely many values of \( k \) work. Option C (Two) is insufficient, as there are not just two but infinitely many solutions. Hence, the correct interpretation is that there are more than two values of \( k \) that satisfy the equation.