One online movie-streaming service costs $8 per month and charges $1.50 per movie. A second service costs $2 per month and charges $2 per movie. For what number of movies per month is the monthly cost of both services the same?
- A. 3
- B. 6
- C. 5
- D. 12
- E. 20
Correct Answer & Rationale
Correct Answer: D
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
Other Related Questions
Through which pair of points could a line of best fit be drawn for the data on the scatterplot?
- A. (0, 36) and (11, 74)
- B. (1, 39) and (6, 60)
- C. (5, 50) and (6, 60)
- D. (6, 60) and (8, 60)
- E. (8, 60) and (11, 74)
Correct Answer & Rationale
Correct Answer: A
Option A, with points (0, 36) and (11, 74), shows a significant range in both x and y values, indicating a strong upward trend that aligns well with the overall direction of the data. Option B, while showing an upward trend, has a narrower range and may not represent the overall data as effectively. Option C features two points that are too close together, limiting their ability to define a clear line of best fit. Option D includes points with the same y-value, suggesting a horizontal line that does not capture the data's trend. Option E, like A, has a valid upward trend but does not span the data range as effectively as A.
Option A, with points (0, 36) and (11, 74), shows a significant range in both x and y values, indicating a strong upward trend that aligns well with the overall direction of the data. Option B, while showing an upward trend, has a narrower range and may not represent the overall data as effectively. Option C features two points that are too close together, limiting their ability to define a clear line of best fit. Option D includes points with the same y-value, suggesting a horizontal line that does not capture the data's trend. Option E, like A, has a valid upward trend but does not span the data range as effectively as A.
sqrt(45) is between what two consecutive whole numbers?
- A. 4 and 5
- B. 5 and 6
- C. 6 and 7
- D. 14 and 15
- E. 22 and 23
Correct Answer & Rationale
Correct Answer: C
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
A campground rents canoes for either $20 per day or $4 per hour. For what number or numbers of hours, h, is it more expensive to rent a canoe at the daily rate than at the hourly rate?
- A. h = 5
- B. h >= 25
- C. h > 5
- D. h < 5
- E. h ≤ 5
Correct Answer & Rationale
Correct Answer: C
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
Which of the following expressions is equivalent to (4x²)(5x³)?
- A. 9xâµ
- B. 9xâ¶
- C. 20xâµ
- D. 20xâ¶
- E. 20xâ¹
Correct Answer & Rationale
Correct Answer: C
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.