Mallory loaded 200 digital pictures into a digital picture frame. 78 are pictures of family members, 26 are pictures of pets, the rest are pictures of friends. The frame displays one picture every 10 seconds. Which value is closest to the probability that the next picture the frame displays will be a picture of a friend?
- A. 0.33
- B. 0.43
- C. 0.48
- D. 0.52
- E. 0.96
Correct Answer & Rationale
Correct Answer: C
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
Other Related Questions
How many solutions does the equation 3x + 9 = 3x - 12 have?
- B. 1
- C. 2
- D. 3
- E. Infinitely many
Correct Answer & Rationale
Correct Answer: A
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.
Josh takes 6 hours to paint a room. Margaret can paint the same room in 4 hours. Assuming their individual rates do not change, how long will it take them to paint the room together?
- A. 1.5 hours
- B. 2.4 hours
- C. 4.8 hours
- D. 5 hours
- E. 10 hours
Correct Answer & Rationale
Correct Answer: B
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
Which of the following expressions is equivalent to (4x²)(5x³)?
- A. 9xâµ
- B. 9xâ¶
- C. 20xâµ
- D. 20xâ¶
- E. 20xâ¹
Correct Answer & Rationale
Correct Answer: C
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.
Which of the following statements is true about the graphs of f(x) = x and g(x) = 3x in the standard (x, y) coordinate plane?
- A. The graphs will not intersect.
- B. The graphs will intersect only at the point (0,0).
- C. The graphs will intersect only at the point (0,1).
- D. The graphs will intersect only at the point (1,1).
- E. The graphs will intersect only at the point (3,3).
Correct Answer & Rationale
Correct Answer: D
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).