hiset math practice test

A widely recognized high school equivalency exam, similar to the GED, designed for individuals who didn’t complete high school but want to earn a diploma-equivalent credential.

The following is a list of triangles: I. Right triangles, II. Isosceles triangles, III. Equilateral triangles. A pair of triangles from which of these groups must be similar to each other?
  • A. I only
  • B. II only
  • C. III only
  • D. I and III only
Correct Answer & Rationale
Correct Answer: C

Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.

Other Related Questions

What is the sum of the two polynomials? 4x² + 3x + 5 + x² + 6x - 3?
  • A. 4x² + 9x + 2
  • B. 5x² + 9x + 2
  • C. 5x² + 9x + 8
  • D. 4x² + 9x² + 2
  • E. 5x² + 9x² + 8
Correct Answer & Rationale
Correct Answer: B

To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
Square PQRS, with a side length of 5 units, will be translated 2 units to the right and 2 units up in the standard (x, y) coordinate plane. What is the area, in square units, of the image of PQRS?
  • A. 20
  • B. 25
  • C. 40
  • D. 50
  • E. 100
Correct Answer & Rationale
Correct Answer: B

The area of a square is calculated by squaring the length of its sides. For square PQRS, with a side length of 5 units, the area is \(5 \times 5 = 25\) square units. Translating the square 2 units to the right and 2 units up does not alter its dimensions or area; it simply changes its position on the coordinate plane. Options A (20), C (40), D (50), and E (100) suggest changes in area due to incorrect assumptions about the effects of translation or miscalculations. The area remains constant at 25 square units, confirming option B as the only accurate choice.
The volume of 1 cup of water is 14.4 cubic inches. The diameter of an empty cylindrical can is 3.0 inches. The can holds 2.0 cups of water. What is the height of the can, to the nearest 0.1 inch?
  • A. 1
  • B. 2
  • C. 3.1
  • D. 4.1
  • E. 6.2
Correct Answer & Rationale
Correct Answer: D

To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.
Connor sprinted 55 yards in 6.25 seconds. What was Connor's average speed in miles per hour?
  • A. 6
  • B. 9
  • C. 15
  • D. 18
  • E. 26
Correct Answer & Rationale
Correct Answer: D

To find Connor's average speed in miles per hour, we first convert 55 yards to miles. There are 1,760 yards in a mile, so 55 yards is approximately 0.0312 miles. Next, we convert 6.25 seconds to hours by dividing by 3,600 (the number of seconds in an hour), resulting in about 0.001736 hours. Average speed is calculated by dividing distance by time: 0.0312 miles / 0.001736 hours ≈ 18 mph. Option A (6 mph) and B (9 mph) underestimate Connor's speed, while C (15 mph) is also too low. E (26 mph) overestimates it. Thus, 18 mph is the accurate average speed.