The following is a list of triangles: I. Right triangles, II. Isosceles triangles, III. Equilateral triangles. A pair of triangles from which of these groups must be similar to each other?
- A. I only
- B. II only
- C. III only
- D. I and III only
Correct Answer & Rationale
Correct Answer: C
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
Other Related Questions
In a survey of 300 people who were randomly sampled from a well-defined population, 60 said that they read a newspaper daily. If 1,000 people had been randomly sampled from the same population and asked the same question, how many would be expected to say they read a newspaper daily?
- A. 180
- B. 200
- C. 360
- D. 600
- E. 760
Correct Answer & Rationale
Correct Answer: A
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
sqrt(45) is between what two consecutive whole numbers?
- A. 4 and 5
- B. 5 and 6
- C. 6 and 7
- D. 14 and 15
- E. 22 and 23
Correct Answer & Rationale
Correct Answer: C
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
Let f(x) = 3x². What is f(-2x)?
- A. -36x²
- B. -12x²
- C. -6x²
- D. 12x²
- E. 36x²
Correct Answer & Rationale
Correct Answer: D
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
The number of years the employee has been employed by the city is at least 25 years. The sum of the employee's age and number of years employed by the city is at least 90 years. Larry has been employed by the city since his 38th birthday. Assuming he continues to work for the city, at what age will he first qualify for full retirement benefits?
- A. 52
- B. 55
- C. 62
- D. 63
- E. 64
Correct Answer & Rationale
Correct Answer: E
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.