Josh takes 6 hours to paint a room. Margaret can paint the same room in 4 hours. Assuming their individual rates do not change, how long will it take them to paint the room together?
- A. 1.5 hours
- B. 2.4 hours
- C. 4.8 hours
- D. 5 hours
- E. 10 hours
Correct Answer & Rationale
Correct Answer: B
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
Other Related Questions
What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
Which of the following intervals most likely represents the average gas mileage, in miles per gallon, of 50% of the cars?
- A. 20 to 32
- B. 24 to 32
- C. 29 to 32
- D. 30 to 44
- E. 32 to 44
Correct Answer & Rationale
Correct Answer: B
Option B, 24 to 32, effectively captures the average gas mileage of 50% of cars, reflecting a range that balances both lower and higher mileage figures commonly found in the market. Option A (20 to 32) is too broad, including lower mileage cars that may not represent the average. Option C (29 to 32) narrows the range excessively, likely excluding many vehicles with average or below-average mileage. Option D (30 to 44) expands the upper limit too much, incorporating high-mileage vehicles that skew the average. Option E (32 to 44) focuses solely on high-mileage cars, which is not representative of the broader population.
Option B, 24 to 32, effectively captures the average gas mileage of 50% of cars, reflecting a range that balances both lower and higher mileage figures commonly found in the market. Option A (20 to 32) is too broad, including lower mileage cars that may not represent the average. Option C (29 to 32) narrows the range excessively, likely excluding many vehicles with average or below-average mileage. Option D (30 to 44) expands the upper limit too much, incorporating high-mileage vehicles that skew the average. Option E (32 to 44) focuses solely on high-mileage cars, which is not representative of the broader population.
Jasmine’s pace for a 3-mile race is 1 minute per mile faster than her pace for a 13-mile race. She ran the 3-mile race in 21 minutes. How many minutes will it take her to run the 13-mile race?
- A. 34
- B. 78
- C. 92
- D. 101
- E. 104
Correct Answer & Rationale
Correct Answer: E
Jasmine completed the 3-mile race in 21 minutes, which gives her a pace of 7 minutes per mile (21 minutes ÷ 3 miles). Since her pace for the 13-mile race is 1 minute slower, her pace for that race is 8 minutes per mile. To find the time for the 13-mile race, multiply her 13-mile pace by the distance: 8 minutes/mile × 13 miles = 104 minutes. Options A (34), B (78), C (92), and D (101) all reflect incorrect calculations or misunderstandings of her pacing difference and distance, leading to values that do not align with the established pace of 8 minutes per mile.
Jasmine completed the 3-mile race in 21 minutes, which gives her a pace of 7 minutes per mile (21 minutes ÷ 3 miles). Since her pace for the 13-mile race is 1 minute slower, her pace for that race is 8 minutes per mile. To find the time for the 13-mile race, multiply her 13-mile pace by the distance: 8 minutes/mile × 13 miles = 104 minutes. Options A (34), B (78), C (92), and D (101) all reflect incorrect calculations or misunderstandings of her pacing difference and distance, leading to values that do not align with the established pace of 8 minutes per mile.
A medium-sized grain of sand can be approximated as a cube with an edge length of 5×10â»â´ meters. Which expression best represents the number of medium-sized sand grains that could be lined up side by side to result in a total length of 1 meter?
- A. 2×10³
- B. 2×10â´
- C. 2×10âµ
- D. 5×10³
- E. 5×10â´
Correct Answer & Rationale
Correct Answer: B
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.