Josh takes 6 hours to paint a room. Margaret can paint the same room in 4 hours. Assuming their individual rates do not change, how long will it take them to paint the room together?
- A. 1.5 hours
- B. 2.4 hours
- C. 4.8 hours
- D. 5 hours
- E. 10 hours
Correct Answer & Rationale
Correct Answer: B
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
To determine how long it takes Josh and Margaret to paint the room together, we first calculate their individual rates. Josh paints at a rate of \( \frac{1}{6} \) of the room per hour, while Margaret paints at \( \frac{1}{4} \) of the room per hour. Combined, their rates are: \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] This means together they paint \( \frac{5}{12} \) of the room per hour. To find the time taken to complete one room, we take the reciprocal of their combined rate: \[ \text{Time} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2.4 \text{ hours} \] Option A (1.5 hours) is too short, as it implies a higher combined rate than possible. Option C (4.8 hours) suggests they are slower than working alone, which is incorrect. Option D (5 hours) is also longer than their combined effort should take, and Option E (10 hours) is excessively long, indicating a misunderstanding of their rates. Thus, 2.4 hours accurately reflects their collaborative efficiency.
Other Related Questions
How many solutions does the equation 3x + 9 = 3x - 12 have?
- B. 1
- C. 2
- D. 3
- E. Infinitely many
Correct Answer & Rationale
Correct Answer: A
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.
In a survey of 300 people who were randomly sampled from a well-defined population, 60 said that they read a newspaper daily. If 1,000 people had been randomly sampled from the same population and asked the same question, how many would be expected to say they read a newspaper daily?
- A. 180
- B. 200
- C. 360
- D. 600
- E. 760
Correct Answer & Rationale
Correct Answer: A
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
The relationship between h, a person's height in inches, and f, the length in inches of the person's femur, is modeled by the equation: h = 1.88f + 32. Which statement correctly identifies and describes the slope of the equation?
- A. The slope of the equation is 1.88, and it represents the femur length, in inches, when the height is 32 inches.
- B. The slope of the equation is 1.88, and it represents the number of inches the height increases for each inch the femur length increases
- C. The slope of the equation is 1.88, and it represents the number of inches the femur length increases for each inch the height increases
- D. The slope of the equation is 32, and it represents the number of inches the height increases for each inch the femur length increases.
- E. The slope of the equation is 32, and it represents the height, in inches, when the femur length is 1.88 inches.
Correct Answer & Rationale
Correct Answer: B
The slope of 1.88 in the equation h = 1.88f + 32 indicates that for every additional inch in femur length (f), height (h) increases by 1.88 inches. This relationship highlights the direct impact of femur length on height. Option A misinterprets the slope, incorrectly stating it represents femur length at a specific height. Option C reverses the relationship, suggesting femur length increases with height, which is inaccurate. Option D incorrectly identifies the slope as 32 and misrepresents the relationship. Option E also incorrectly identifies the slope and misinterprets its meaning in the context of the equation.
The slope of 1.88 in the equation h = 1.88f + 32 indicates that for every additional inch in femur length (f), height (h) increases by 1.88 inches. This relationship highlights the direct impact of femur length on height. Option A misinterprets the slope, incorrectly stating it represents femur length at a specific height. Option C reverses the relationship, suggesting femur length increases with height, which is inaccurate. Option D incorrectly identifies the slope as 32 and misrepresents the relationship. Option E also incorrectly identifies the slope and misinterprets its meaning in the context of the equation.
Which of the following expressions is equivalent to: 1200 × (5 × 10â·)?
- A. 12×10¹â°
- B. 6.0×10¹â°
- C. 6.0×10¹¹
- D. 7.2×10¹³
- E. 9.4×10¹â´
Correct Answer & Rationale
Correct Answer: B
To find an equivalent expression for \( 1200 \times (5 \times 10^n) \), we first simplify \( 1200 \) as \( 1.2 \times 10^3 \). Thus, the expression becomes \( 1.2 \times 10^3 \times 5 \times 10^n = 6.0 \times 10^{3+n} \). Option A incorrectly simplifies the coefficient and exponent. Option C miscalculates the exponent, not aligning with the original multiplication. Option D has an incorrect coefficient and exponent combination. Option E also miscalculates the coefficient and exponent. Therefore, only option B accurately reflects the simplified expression.
To find an equivalent expression for \( 1200 \times (5 \times 10^n) \), we first simplify \( 1200 \) as \( 1.2 \times 10^3 \). Thus, the expression becomes \( 1.2 \times 10^3 \times 5 \times 10^n = 6.0 \times 10^{3+n} \). Option A incorrectly simplifies the coefficient and exponent. Option C miscalculates the exponent, not aligning with the original multiplication. Option D has an incorrect coefficient and exponent combination. Option E also miscalculates the coefficient and exponent. Therefore, only option B accurately reflects the simplified expression.