hiset math practice test

A widely recognized high school equivalency exam, similar to the GED, designed for individuals who didn’t complete high school but want to earn a diploma-equivalent credential.

Quadrilateral ABCD satisfies the following conditions: Side AB is parallel to side CD, Side BC is not parallel to side AD. Which term is the best classification for quadrilateral ABCD?
  • A. Parallelogram
  • B. Rectangle
  • C. Rhombus
  • D. Square
  • E. Trapezoid
Correct Answer & Rationale
Correct Answer: E

Quadrilateral ABCD has one pair of parallel sides (AB and CD), which defines it as a trapezoid. Option A, parallelogram, is incorrect because both pairs of opposite sides must be parallel. Option B, rectangle, is a specific type of parallelogram with right angles, so it also requires two pairs of parallel sides. Option C, rhombus, similarly demands both pairs of opposite sides to be parallel, along with equal side lengths. Option D, square, is a special type of rectangle and rhombus, necessitating both pairs of parallel sides and equal side lengths. Thus, the only classification that fits is trapezoid.

Other Related Questions

In tennis, a player has two chances to serve the ball successfully. Tamara is successful 70% of the time on her first serve. Tamara is successful 80% of the time on her second serve. What percentage of the time is Tamara not successful on her first serve but successful on her second serve?
  • A. 5%
  • B. 14%
  • C. 24%
  • D. 50%
  • E. 56%
Correct Answer & Rationale
Correct Answer: B

To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
Connor sprinted 55 yards in 6.25 seconds. What was Connor's average speed in miles per hour?
  • A. 6
  • B. 9
  • C. 15
  • D. 18
  • E. 26
Correct Answer & Rationale
Correct Answer: D

To find Connor's average speed in miles per hour, we first convert 55 yards to miles. There are 1,760 yards in a mile, so 55 yards is approximately 0.0312 miles. Next, we convert 6.25 seconds to hours by dividing by 3,600 (the number of seconds in an hour), resulting in about 0.001736 hours. Average speed is calculated by dividing distance by time: 0.0312 miles / 0.001736 hours ≈ 18 mph. Option A (6 mph) and B (9 mph) underestimate Connor's speed, while C (15 mph) is also too low. E (26 mph) overestimates it. Thus, 18 mph is the accurate average speed.
One online movie-streaming service costs $8 per month and charges $1.50 per movie. A second service costs $2 per month and charges $2 per movie. For what number of movies per month is the monthly cost of both services the same?
  • A. 3
  • B. 6
  • C. 5
  • D. 12
  • E. 20
Correct Answer & Rationale
Correct Answer: D

To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
The recommended dosage of a medicine is 4 milligrams per kilogram of body weight. What is the recommended dosage, in milligrams, for a person who weighs 84 kilograms?
  • A. 21
  • B. 88
  • C. 324
  • D. 336
  • E. 2100
Correct Answer & Rationale
Correct Answer: D

To determine the recommended dosage for a person weighing 84 kilograms, multiply their weight by the dosage per kilogram: 4 mg/kg × 84 kg = 336 mg. Option A (21 mg) is incorrect as it significantly underestimates the dosage based on the weight. Option B (88 mg) also miscalculates the dosage, failing to apply the correct multiplication. Option C (324 mg) is close but still incorrect, as it does not reflect the accurate calculation. Option E (2100 mg) is far too high, indicating a misunderstanding of the dosage per kilogram. Thus, 336 mg is the correct dosage for the individual.