Emma measured the height of her laptop screen. She reported the height as 8 inches, accurate to the nearest inch. The actual height of the screen must be:
- A. at least 7.5 inches and less than 8.5 inches
- B. at least 7.9 inches and less than 8.1 inches
- C. at least 7.99 inches and less than 8.01 inches
- D. at least 8 inches
- E. exactly 8 inches
Correct Answer & Rationale
Correct Answer: A
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
Other Related Questions
What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
Which of the following expressions is equivalent to: 6x³ + 7x² + 1/x?
- A. 63 + 72 + 1/x
- B. 63 + 72 + 1
- C. 6x² + 7x + 1/x
- D. 6x² + 7x + 1
- E. 6x² + 7x² + 1
Correct Answer & Rationale
Correct Answer: C
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
A bowl contains 18 pieces of candy: 8 red, 6 orange, and 4 green. Brandon will select 1 piece of candy at random. What is the probability that Brandon will select a green piece?
- A. 2/7
- B. 2/9
- C. 2/11
- D. 1/9
- E. 1/8
Correct Answer & Rationale
Correct Answer: B
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
The volume of 1 cup of water is 14.4 cubic inches. The diameter of an empty cylindrical can is 3.0 inches. The can holds 2.0 cups of water. What is the height of the can, to the nearest 0.1 inch?
- A. 1
- B. 2
- C. 3.1
- D. 4.1
- E. 6.2
Correct Answer & Rationale
Correct Answer: D
To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.
To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.