What are the solutions to (x-2)(x+4) = 0?
- A. -4 and 2
- B. -3 and 1
- C. -2 and 4
- D. -1 and 1
- E. -1 and 3
Correct Answer & Rationale
Correct Answer: A
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
Other Related Questions
The following is a list of triangles: I. Right triangles, II. Isosceles triangles, III. Equilateral triangles. A pair of triangles from which of these groups must be similar to each other?
- A. I only
- B. II only
- C. III only
- D. I and III only
Correct Answer & Rationale
Correct Answer: C
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
When Henry plays the songs on the playlist in a random order, what is the probability a rock song will be played first?
- A. 3/4
- B. 1/3
- C. 1/4
- D. 3/10
- E. 5/16
Correct Answer & Rationale
Correct Answer: D
To find the probability of a rock song being played first, we need to know the total number of songs and how many of those are rock songs. If there are 3 rock songs and a total of 10 songs, the probability is calculated as the number of favorable outcomes (rock songs) divided by the total outcomes (all songs). Thus, the probability is 3/10, which corresponds to option D. Option A (3/4) overestimates the likelihood by implying a much higher proportion of rock songs. Option B (1/3) incorrectly assumes there are fewer total songs than there actually are. Option C (1/4) underrepresents the rock songs available. Option E (5/16) is irrelevant as it does not align with the total number of songs.
To find the probability of a rock song being played first, we need to know the total number of songs and how many of those are rock songs. If there are 3 rock songs and a total of 10 songs, the probability is calculated as the number of favorable outcomes (rock songs) divided by the total outcomes (all songs). Thus, the probability is 3/10, which corresponds to option D. Option A (3/4) overestimates the likelihood by implying a much higher proportion of rock songs. Option B (1/3) incorrectly assumes there are fewer total songs than there actually are. Option C (1/4) underrepresents the rock songs available. Option E (5/16) is irrelevant as it does not align with the total number of songs.
The number of years the employee has been employed by the city is at least 25 years. The sum of the employee's age and number of years employed by the city is at least 90 years. Larry has been employed by the city since his 38th birthday. Assuming he continues to work for the city, at what age will he first qualify for full retirement benefits?
- A. 52
- B. 55
- C. 62
- D. 63
- E. 64
Correct Answer & Rationale
Correct Answer: E
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.
What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.