hiset math practice test

A widely recognized high school equivalency exam, similar to the GED, designed for individuals who didn’t complete high school but want to earn a diploma-equivalent credential.

What are the solutions to (x-2)(x+4) = 0?
  • A. -4 and 2
  • B. -3 and 1
  • C. -2 and 4
  • D. -1 and 1
  • E. -1 and 3
Correct Answer & Rationale
Correct Answer: A

To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.

Other Related Questions

In a survey of 300 people who were randomly sampled from a well-defined population, 60 said that they read a newspaper daily. If 1,000 people had been randomly sampled from the same population and asked the same question, how many would be expected to say they read a newspaper daily?
  • A. 180
  • B. 200
  • C. 360
  • D. 600
  • E. 760
Correct Answer & Rationale
Correct Answer: A

To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
sqrt(45) is between what two consecutive whole numbers?
  • A. 4 and 5
  • B. 5 and 6
  • C. 6 and 7
  • D. 14 and 15
  • E. 22 and 23
Correct Answer & Rationale
Correct Answer: C

To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
The volume of 1 cup of water is 14.4 cubic inches. The diameter of an empty cylindrical can is 3.0 inches. The can holds 2.0 cups of water. What is the height of the can, to the nearest 0.1 inch?
  • A. 1
  • B. 2
  • C. 3.1
  • D. 4.1
  • E. 6.2
Correct Answer & Rationale
Correct Answer: D

To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.
Let g(x) = x². What is the average rate of change of the function from x = 4 to x = 8?
  • A. 1/12
  • B. $2
  • C. $4
  • D. $12
  • E. $48
Correct Answer & Rationale
Correct Answer: C

To determine the average rate of change of the function g(x) = x² from x = 4 to x = 8, we use the formula: (g(b) - g(a)) / (b - a), where a = 4 and b = 8. Calculating g(4) = 4² = 16 and g(8) = 8² = 64. Thus, the average rate of change is (64 - 16) / (8 - 4) = 48 / 4 = 12. Option A (1/12) is incorrect as it underestimates the change. Option B ($2) and Option D ($12) miscalculate the average rate. Option E ($48) represents the total change but does not account for the interval length. The correct average rate of change is $12, reflecting the consistent increase of the function over the specified interval.