hiset math practice test

A widely recognized high school equivalency exam, similar to the GED, designed for individuals who didn’t complete high school but want to earn a diploma-equivalent credential.

Jasmine’s pace for a 3-mile race is 1 minute per mile faster than her pace for a 13-mile race. She ran the 3-mile race in 21 minutes. How many minutes will it take her to run the 13-mile race?
  • A. 34
  • B. 78
  • C. 92
  • D. 101
  • E. 104
Correct Answer & Rationale
Correct Answer: E

Jasmine completed the 3-mile race in 21 minutes, which gives her a pace of 7 minutes per mile (21 minutes ÷ 3 miles). Since her pace for the 13-mile race is 1 minute slower, her pace for that race is 8 minutes per mile. To find the time for the 13-mile race, multiply her 13-mile pace by the distance: 8 minutes/mile × 13 miles = 104 minutes. Options A (34), B (78), C (92), and D (101) all reflect incorrect calculations or misunderstandings of her pacing difference and distance, leading to values that do not align with the established pace of 8 minutes per mile.

Other Related Questions

Square PQRS, with a side length of 5 units, will be translated 2 units to the right and 2 units up in the standard (x, y) coordinate plane. What is the area, in square units, of the image of PQRS?
  • A. 20
  • B. 25
  • C. 40
  • D. 50
  • E. 100
Correct Answer & Rationale
Correct Answer: B

The area of a square is calculated by squaring the length of its sides. For square PQRS, with a side length of 5 units, the area is \(5 \times 5 = 25\) square units. Translating the square 2 units to the right and 2 units up does not alter its dimensions or area; it simply changes its position on the coordinate plane. Options A (20), C (40), D (50), and E (100) suggest changes in area due to incorrect assumptions about the effects of translation or miscalculations. The area remains constant at 25 square units, confirming option B as the only accurate choice.
An irrigation pivot makes a circle with a radius of about 400 meters. Which of the following values is closest to the area, in square meters, of the circle?
  • A. 1300
  • B. 2500
  • C. 160000
  • D. 502700
  • E. 1579100
Correct Answer & Rationale
Correct Answer: D

To find the area of a circle, the formula \( A = \pi r^2 \) is used, where \( r \) is the radius. With a radius of 400 meters, the area calculates to approximately \( A = \pi \times (400)^2 \approx 502700 \) square meters, making option D the closest value. Option A (1300) is far too low, indicating a misunderstanding of the formula. Option B (2500) is also significantly underestimated for such a large radius. Option C (160000) is closer but still incorrect, as it neglects the multiplication by \( \pi \). Option E (1579100) overestimates the area, suggesting a miscalculation of the radius or the area formula.
Let g(x) = x². What is the average rate of change of the function from x = 4 to x = 8?
  • A. 1/12
  • B. $2
  • C. $4
  • D. $12
  • E. $48
Correct Answer & Rationale
Correct Answer: C

To determine the average rate of change of the function g(x) = x² from x = 4 to x = 8, we use the formula: (g(b) - g(a)) / (b - a), where a = 4 and b = 8. Calculating g(4) = 4² = 16 and g(8) = 8² = 64. Thus, the average rate of change is (64 - 16) / (8 - 4) = 48 / 4 = 12. Option A (1/12) is incorrect as it underestimates the change. Option B ($2) and Option D ($12) miscalculate the average rate. Option E ($48) represents the total change but does not account for the interval length. The correct average rate of change is $12, reflecting the consistent increase of the function over the specified interval.
Which of the following expressions is equivalent to: 6x³ + 7x² + 1/x?
  • A. 63 + 72 + 1/x
  • B. 63 + 72 + 1
  • C. 6x² + 7x + 1/x
  • D. 6x² + 7x + 1
  • E. 6x² + 7x² + 1
Correct Answer & Rationale
Correct Answer: C

The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.