The number of years the employee has been employed by the city is at least 25 years. The sum of the employee's age and number of years employed by the city is at least 90 years. Larry has been employed by the city since his 38th birthday. Assuming he continues to work for the city, at what age will he first qualify for full retirement benefits?
- A. 52
- B. 55
- C. 62
- D. 63
- E. 64
Correct Answer & Rationale
Correct Answer: E
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.
To qualify for full retirement benefits, Larry must be at least 25 years employed and have a combined age and years of service of at least 90 years. Since he started working at age 38, he will reach 25 years of employment at age 63. At that point, his age (63) plus his years of service (25) totals 88, which does not meet the 90-year requirement. At age 64, he will have 26 years of service, bringing the total to 90 years (64 + 26), thus meeting both criteria. Options A (52), B (55), and C (62) do not allow for 25 years of service, while D (63) fails to meet the age and service sum requirement.
Other Related Questions
The volume of 1 cup of water is 14.4 cubic inches. The diameter of an empty cylindrical can is 3.0 inches. The can holds 2.0 cups of water. What is the height of the can, to the nearest 0.1 inch?
- A. 1
- B. 2
- C. 3.1
- D. 4.1
- E. 6.2
Correct Answer & Rationale
Correct Answer: D
To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.
To find the height of the can, first determine the total volume of water it holds. Since 1 cup is 14.4 cubic inches, 2 cups equal 28.8 cubic inches (2 x 14.4). The formula for the volume of a cylinder is V = πr²h. The radius (r) of the can is half the diameter: 1.5 inches. Plugging in the values: 28.8 = π(1.5)²h. Calculating the area of the base gives approximately 7.07. Rearranging the equation for height (h) results in h ≈ 4.1 inches. Options A (1), B (2), C (3.1), and E (6.2) do not satisfy the volume calculation, as they yield heights inconsistent with the required volume based on the diameter provided.
In tennis, a player has two chances to serve the ball successfully. Tamara is successful 70% of the time on her first serve. Tamara is successful 80% of the time on her second serve. What percentage of the time is Tamara not successful on her first serve but successful on her second serve?
- A. 5%
- B. 14%
- C. 24%
- D. 50%
- E. 56%
Correct Answer & Rationale
Correct Answer: B
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
In a survey of 300 people who were randomly sampled from a well-defined population, 60 said that they read a newspaper daily. If 1,000 people had been randomly sampled from the same population and asked the same question, how many would be expected to say they read a newspaper daily?
- A. 180
- B. 200
- C. 360
- D. 600
- E. 760
Correct Answer & Rationale
Correct Answer: A
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
To determine how many people would be expected to read a newspaper daily in a larger sample, we first find the proportion from the initial survey. Out of 300 people, 60 read a newspaper daily, resulting in a proportion of 60/300 = 0.2 or 20%. Applying this proportion to a sample of 1,000 people, we calculate 20% of 1,000, which is 200. Therefore, option B (200) is the expected number. Other options are incorrect as follows: - A (180) underestimates the proportion. - C (360) overestimates, assuming a higher reading rate. - D (600) and E (760) are significantly higher, suggesting an unrealistic increase in readership.
What are the solutions to (x-2)(x+4) = 0?
- A. -4 and 2
- B. -3 and 1
- C. -2 and 4
- D. -1 and 1
- E. -1 and 3
Correct Answer & Rationale
Correct Answer: A
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.