The world's highest suspension bridge spans the Arkansas River at a height of 1,053 feet above the water. If a ball is dropped from the bridge. The height of the ball, In feet, after t seconds can be modeled by the equation f(t)= -16(t)^2 + 1053. How many feet above the water is the ball 7 seconds after being dropped?
Correct Answer & Rationale
Correct Answer: A
To determine the height of the ball 7 seconds after being dropped, substitute \( t = 7 \) into the equation \( f(t) = -16(t)^2 + 1053 \). Calculating this gives \( f(7) = -16(7)^2 + 1053 = -16(49) + 1053 = -784 + 1053 = 269 \) feet. Option A provides this correct height of 269 feet. Other options are incorrect because they result from miscalculations or incorrect substitutions into the equation. For example, using an incorrect value for \( t \) or failing to properly apply the formula leads to heights that do not reflect the physics of the scenario.
To determine the height of the ball 7 seconds after being dropped, substitute \( t = 7 \) into the equation \( f(t) = -16(t)^2 + 1053 \). Calculating this gives \( f(7) = -16(7)^2 + 1053 = -16(49) + 1053 = -784 + 1053 = 269 \) feet. Option A provides this correct height of 269 feet. Other options are incorrect because they result from miscalculations or incorrect substitutions into the equation. For example, using an incorrect value for \( t \) or failing to properly apply the formula leads to heights that do not reflect the physics of the scenario.
Other Related Questions
The daily cost, C(x), for a company to produce x microscopes is given by the equation C(x) = 300 + 10.5x. What is the cost of producing 50 microscopes?
- A. $41,250
- B. $360.50
- C. $15,525
- D. $825
Correct Answer & Rationale
Correct Answer: D
To determine the cost of producing 50 microscopes, substitute x = 50 into the equation C(x) = 300 + 10.5x. This gives C(50) = 300 + 10.5(50) = 300 + 525 = 825. Thus, the total cost is $825. Option A ($41,250) is incorrect as it miscalculates the cost by multiplying incorrectly. Option B ($360.50) results from a misunderstanding of the equation, possibly neglecting the fixed cost. Option C ($15,525) likely arises from an error in multiplying the variable cost without adding the fixed cost. Each incorrect option fails to follow the proper calculation method outlined in the cost equation.
To determine the cost of producing 50 microscopes, substitute x = 50 into the equation C(x) = 300 + 10.5x. This gives C(50) = 300 + 10.5(50) = 300 + 525 = 825. Thus, the total cost is $825. Option A ($41,250) is incorrect as it miscalculates the cost by multiplying incorrectly. Option B ($360.50) results from a misunderstanding of the equation, possibly neglecting the fixed cost. Option C ($15,525) likely arises from an error in multiplying the variable cost without adding the fixed cost. Each incorrect option fails to follow the proper calculation method outlined in the cost equation.
The distance, d, in feet, it takes to come to a complete stop when driving a car r miles per hour can be found using the equation d = 1/20(r^2)+ r. If it takes a car 240 feet to come to a complete stop, what was the speed of the car, in miles per hour, when the driver began to stop it?
- A. 40
- B. 30
- C. 60
- D. 80
Correct Answer & Rationale
Correct Answer: A
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
The graph shows a handyman's fees, f(x), in terms of the hours worked, x. The fees include a fuel charge and an hourly rate. What is the handyman's hourly rate?
- A. $5
- B. $55
- C. $30
- D. $25
Correct Answer & Rationale
Correct Answer: D
To determine the handyman's hourly rate, we analyze the graph showing the relationship between fees and hours worked. The hourly rate is represented by the slope of the line on the graph. Option A ($5) is too low for a reasonable hourly rate in this context. Option B ($55) is excessively high, suggesting an unrealistic fee for common handyman services. Option C ($30) may seem plausible, but it does not match the slope indicated by the graph. Option D ($25) accurately reflects the slope calculated from the graph, representing a fair and competitive hourly rate for handyman services.
To determine the handyman's hourly rate, we analyze the graph showing the relationship between fees and hours worked. The hourly rate is represented by the slope of the line on the graph. Option A ($5) is too low for a reasonable hourly rate in this context. Option B ($55) is excessively high, suggesting an unrealistic fee for common handyman services. Option C ($30) may seem plausible, but it does not match the slope indicated by the graph. Option D ($25) accurately reflects the slope calculated from the graph, representing a fair and competitive hourly rate for handyman services.
Kelly has a home business making jewellery. It takes 2 hours for her to make each bracelet and 3.5 hours to make each necklace. Next month she plans to spend 140 hours to make jewellery. If she fills a special order for 22 bracelets at the beginning of the mouth and spends the rest of the month making necklaces, how many necklaces can Kelly make in the month
- A. 52
- B. 27
- C. 40
- D. 31
Correct Answer & Rationale
Correct Answer: B
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 รท 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 รท 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.