While exploring the Moon during the Apollo 15 mission, astronaut David Scott held a 1.32-kg geological hammer in one hand and a 0.03-kg falcon feather in the other, releasing them from the same height. The Moon has no air resistance and the acceleration due to gravity is only 1.6 m/s'. The two objects landed on the surface of the Moon at the same time.
What is the relationship between the kinetic energy of the feather and of the hammer just before they hit the surface of the Moon?
- A. The hammer has more kinetic energy than the feather because it has a greater mass.
- B. Both objects have the same kinetic energy because they fell with the same velocity.
- C. The hammer has more kinetic energy than the feather because it will accelerate faster than the feather.
- D. Both objects have the same kinetic energy because gravity pulls on both objects equally.
Correct Answer & Rationale
Correct Answer: A
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
Other Related Questions
A diagram of a PV cell being exposed to sunlight is shown below. Click on the labels you want to select and drag them into the boxes to show the components of the PV cell.
- A. Phosphorus-injected layer
- B. Boron-injected layer
- C. Electric field
- D. Energy
Correct Answer & Rationale
Correct Answer: A,B,C
The components of a photovoltaic (PV) cell include the phosphorus-injected layer, which serves as the n-type semiconductor, and the boron-injected layer, acting as the p-type semiconductor. Together, these layers create a junction that facilitates the movement of electrons when exposed to sunlight. The electric field between these layers is crucial for separating charge carriers, enabling electricity generation. Option D, "Energy," is not a structural component of the PV cell but rather a result of its operation. It does not represent a physical part of the cell, making it an incorrect choice.
The components of a photovoltaic (PV) cell include the phosphorus-injected layer, which serves as the n-type semiconductor, and the boron-injected layer, acting as the p-type semiconductor. Together, these layers create a junction that facilitates the movement of electrons when exposed to sunlight. The electric field between these layers is crucial for separating charge carriers, enabling electricity generation. Option D, "Energy," is not a structural component of the PV cell but rather a result of its operation. It does not represent a physical part of the cell, making it an incorrect choice.
Placing solid ammonium nitrate, NH4NO3, in a container of water causes an endothermic reaction. The result is ammonium hydroxide, NH4OH, and nitric acid, HNO3. Which diagram shows the correct equation for the reaction?
- A. NH4OH + HNO3 → NH4NO3 + H2O + energy
- B. NH4NO3 + H2O + energy → NH4OH + HNO3
- C. NH4NO3 + H2O → NH4OH + HNO3 + energy
- D. NH4OH + HNO3 + energy → NH4NO3 + H2O
Correct Answer & Rationale
Correct Answer: B
The reaction between solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Thus, the equation must reflect the consumption of energy during the process. Option B correctly shows that ammonium nitrate (NH4NO3) and water react to form ammonium hydroxide (NH4OH) and nitric acid (HNO3), while requiring energy input. Option A incorrectly suggests energy is released, which contradicts the endothermic nature of the reaction. Option C implies that energy is produced, which is also incorrect. Option D similarly misrepresents the reaction by suggesting energy is released, aligning with an exothermic process rather than the observed endothermic reaction.
The reaction between solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Thus, the equation must reflect the consumption of energy during the process. Option B correctly shows that ammonium nitrate (NH4NO3) and water react to form ammonium hydroxide (NH4OH) and nitric acid (HNO3), while requiring energy input. Option A incorrectly suggests energy is released, which contradicts the endothermic nature of the reaction. Option C implies that energy is produced, which is also incorrect. Option D similarly misrepresents the reaction by suggesting energy is released, aligning with an exothermic process rather than the observed endothermic reaction.
If these results correctly predict the performance of this kneepad design, what is the probability that one of the kneepads will require a force of 145 N or greater to cause failure?
- A. 53%
- B. 22%
- C. 75%
- D. 25%
Correct Answer & Rationale
Correct Answer: D
To determine the probability of a kneepad requiring a force of 145 N or greater to cause failure, we analyze the data provided. The correct option, 25%, indicates that one-fourth of the kneepads are expected to fail under this force, aligning with statistical predictions for this design. Option A (53%) overestimates the likelihood, suggesting more than half will fail, which is not supported by the data. Option B (22%) underestimates the probability, indicating fewer kneepads will fail than expected. Option C (75%) is excessively high, implying a significant majority would fail, which contradicts the predicted performance. Thus, 25% accurately reflects the failure rate at this force threshold.
To determine the probability of a kneepad requiring a force of 145 N or greater to cause failure, we analyze the data provided. The correct option, 25%, indicates that one-fourth of the kneepads are expected to fail under this force, aligning with statistical predictions for this design. Option A (53%) overestimates the likelihood, suggesting more than half will fail, which is not supported by the data. Option B (22%) underestimates the probability, indicating fewer kneepads will fail than expected. Option C (75%) is excessively high, implying a significant majority would fail, which contradicts the predicted performance. Thus, 25% accurately reflects the failure rate at this force threshold.
The Punnett square below shows a cross between a male long-haired cat with white fur and a female short-haired cat with colored fur... what is the most likely number of long-haired kittens with colored fur?
- A. 10
- B. 20
- C. 30
- D. 60
Correct Answer & Rationale
Correct Answer: A
In a Punnett square, the genetic traits of the parents are combined to predict offspring traits. Long hair (L) is dominant over short hair (l), and colored fur (C) is dominant over white fur (c). The male cat is homozygous for long hair and white fur (LLcc), while the female is homozygous for short hair and colored fur (llCC). The resulting genotype for the kittens will be LlCc, indicating they will all have long hair and colored fur. Option A (10) reflects the expected number of long-haired, colored kittens based on the given parental genotypes. Options B (20), C (30), and D (60) suggest higher numbers that do not align with the predicted offspring ratio from the cross, thus they are incorrect.
In a Punnett square, the genetic traits of the parents are combined to predict offspring traits. Long hair (L) is dominant over short hair (l), and colored fur (C) is dominant over white fur (c). The male cat is homozygous for long hair and white fur (LLcc), while the female is homozygous for short hair and colored fur (llCC). The resulting genotype for the kittens will be LlCc, indicating they will all have long hair and colored fur. Option A (10) reflects the expected number of long-haired, colored kittens based on the given parental genotypes. Options B (20), C (30), and D (60) suggest higher numbers that do not align with the predicted offspring ratio from the cross, thus they are incorrect.