ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

What is the slope of a line perpendicular to the line given by the equation 5x - 2y = -10?
  • A. -0.4
  • B. 2\5
  • C. 5\2
  • D. -2.5
Correct Answer & Rationale
Correct Answer: B

To find the slope of a line perpendicular to the given equation \(5x - 2y = -10\), we first convert it to slope-intercept form (y = mx + b). Rearranging gives \(y = \frac{5}{2}x + 5\), revealing a slope (m) of \(\frac{5}{2}\). The slope of a line perpendicular to another is the negative reciprocal, which is \(-\frac{2}{5}\). Option A (-0.4) is equivalent to \(-\frac{2}{5}\), which is incorrect as it represents a decimal form. Option C (\(\frac{5}{2}\)) is the slope of the original line, not its perpendicular. Option D (-2.5) does not represent the correct negative reciprocal either.

Other Related Questions

Which expression is undefined over the real numbers?
  • A. (-3)^0
  • B. 0/4
  • C. |-2|
  • D. (-7)^(1/2)
Correct Answer & Rationale
Correct Answer: D

The expression (-7)^(1/2) is undefined over the real numbers because it represents the square root of a negative number, which does not yield a real result. Option A, (-3)^0, equals 1, as any non-zero number raised to the power of 0 is defined. Option B, 0/4, simplifies to 0, which is a defined real number. Option C, |-2|, equals 2, as the absolute value of any number is always defined and non-negative. Thus, only (-7)^(1/2) fails to produce a real number, making it the only undefined expression in this context.
What is the value of the expression 2j - 7jkm when j = 5, k = -14, and m = -3?
Correct Answer & Rationale
Correct Answer: A

To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
An advertisement poster in the window of a shoe store is in the shape of a rectangle. The length of the poster is 9 less than 4 times the width. Which expression represents the length of the poster when w is the width
  • A. 4w - 9
  • B. 9 - 4w
  • C. 4w + 9
  • D. 9w - 4
Correct Answer & Rationale
Correct Answer: A

The expression for the length of the poster is determined by the relationship given in the problem. The length is described as "9 less than 4 times the width," which translates mathematically to \(4w - 9\). Option A (4w - 9) accurately reflects this relationship. Option B (9 - 4w) incorrectly suggests that the length is greater than 9 and decreases as width increases, which contradicts the problem's description. Option C (4w + 9) implies that the length increases by 9, rather than decreasing, which is not aligned with the original statement. Option D (9w - 4) introduces an incorrect multiplication factor and does not adhere to the given relationship, making it invalid.
Dr. Evers is experimenting with light beams and prisms. He passes a beam of white light through a triangular prism which spreads the light out into its six rainbow colors. The bases of the prism are equilateral triangles. The surface area of this prism is 4,292 square millimeters. The area of each triangular face is 271 square millimeters. Which expression can be used to find h, the height, in millimeters, of the prism?
Question image
  • A. 4,292/3(25)
  • B. 4,292/271
  • C. (4,292-271)/25
  • D. (4,292-2(271))/3(25)
Correct Answer & Rationale
Correct Answer: D

To find the height \( h \) of the prism, we start with the total surface area of the prism, which includes the two triangular bases and three rectangular sides. The area of the two triangular bases is \( 2 \times 271 = 542 \) square millimeters. Subtracting this from the total surface area gives \( 4,292 - 542 = 3,750 \) square millimeters for the area of the rectangular sides. Since the height \( h \) is involved in the area of the rectangles, dividing this area by the perimeter of the base (which is \( 3 \times 25 = 75 \) mm) leads to \( h = \frac{3,750}{75} \) or \( \frac{4,292 - 542}{75} \), simplifying to option D. Options A and B incorrectly compute the height without accounting for the rectangular areas properly. Option C miscalculates the area of the triangular bases and does not consider the full surface area needed to find \( h \). Thus, only option D correctly utilizes the total surface area and the dimensions of the prism to derive the height.