In 1908, a huge explosion known as the Tunguska Event flattened trees for miles across a remote area of Russia. Scientists now think an asteroid or a comet entered Earth's atmosphere, causing the explosion. Ice core samples from an ice sheet in Greenland reveal signs of this enormous explosion: deposits of ammonia equal to 5 micrograms per square meter. But how exactly did these telltale molecules form?
• Hypothesis 1: The Tunguska explosion started forest fires, known to produce ammonia. Data indicates that such fires would have deposited an amount of ammonia over the Northern Hemisphere equaling 0.1 micrograms per square meter.
• Hypothesis 2: Up to 1% of the object's mass might have been ammonia, and this ammonia might have spread over the Northern Hemisphere. Approximately 0.00005 micrograms of ammonia per square meter are predicted by this hypothesis.
• Hypothesis 3: Since many compounds form in the presence of high heat, the ammonia could
have been produced as the falling object heated the atmosphere. However, heat alone is not
sufficient to cause the formation of ammonia.
• Hypothesis 4: As it passed through the atmosphere, the object pushed air in front of it at high pressure. Nitrogen and hydrogen combine to form ammonia under similar pressure. Considering the amount of hydrogen expected in a comet and the available nitrogen in Earth's atmosphere, approximately 5 micrograms of ammonia per square meter would have been deposited under this hypothesis.
Which statement describes a weakness of the investigation in the passage?
- A. None of the hypotheses are directly related to the ice core data.
- B. The Greenland ice sheet is far away from the site of the explosion in Russia.
- C. Several of the hypotheses rely on unproven processes or estimated values.
- D. A few micrograms of ammonia is insufficient evidence for a conclusion.
Correct Answer & Rationale
Correct Answer: C
Option C highlights a significant weakness, as relying on unproven processes or estimated values can lead to unreliable conclusions, undermining the investigation's credibility. Option A is incorrect because hypotheses can be related to data in broader contexts, even if not directly. Option B misrepresents the geographical relevance; distance alone does not invalidate the connection between the ice core data and the explosion. Option D, while suggesting a concern about evidence quantity, does not address the fundamental issue of reliance on unproven processes that can skew the investigation's outcomes.
Option C highlights a significant weakness, as relying on unproven processes or estimated values can lead to unreliable conclusions, undermining the investigation's credibility. Option A is incorrect because hypotheses can be related to data in broader contexts, even if not directly. Option B misrepresents the geographical relevance; distance alone does not invalidate the connection between the ice core data and the explosion. Option D, while suggesting a concern about evidence quantity, does not address the fundamental issue of reliance on unproven processes that can skew the investigation's outcomes.
Other Related Questions
What is the relationship between the kinetic energy of the feather and of the hammer just before they hit the surface of the Moon?
- A. The hammer has more kinetic energy than the feather because it has a greater mass.
- B. Both objects have the same kinetic energy because they fell with the same velocity.
- C. The hammer has more kinetic energy than the feather because it will accelerate faster than the feather.
- D. Both objects have the same kinetic energy because gravity pulls on both objects equally.
Correct Answer & Rationale
Correct Answer: A
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
The chemical composition and energy density of four fuels are shown in the table. Ethane, which has a chemical composition of C2H6, is also a fuel. What is the predicted energy density of ethane?
- A. 45 MJ/kg
- B. 42 MJ/kg
- C. 52 MJ/kg
- D. 48 MJ/kg
Correct Answer & Rationale
Correct Answer: C
To determine the predicted energy density of ethane (C2H6), one can analyze its molecular structure and compare it to the energy densities of similar hydrocarbons listed in the table. Ethane, being an alkane, typically has a higher energy density due to its saturated carbon-hydrogen bonds. Option A (45 MJ/kg) is lower than expected for alkanes of similar size. Option B (42 MJ/kg) underestimates the energy density, as it does not align with the general trend for hydrocarbons. Option D (48 MJ/kg) is closer but still below the typical range for ethane. Thus, option C (52 MJ/kg) aligns with the expected energy density for ethane, reflecting its molecular composition and energy potential.
To determine the predicted energy density of ethane (C2H6), one can analyze its molecular structure and compare it to the energy densities of similar hydrocarbons listed in the table. Ethane, being an alkane, typically has a higher energy density due to its saturated carbon-hydrogen bonds. Option A (45 MJ/kg) is lower than expected for alkanes of similar size. Option B (42 MJ/kg) underestimates the energy density, as it does not align with the general trend for hydrocarbons. Option D (48 MJ/kg) is closer but still below the typical range for ethane. Thus, option C (52 MJ/kg) aligns with the expected energy density for ethane, reflecting its molecular composition and energy potential.
According to the passage, which statement about hybrid lovebirds is true?
- A. Nest-building behavior can be used to determine evolutionary relationships between lovebird species.
- B. Hybrid lovebirds use nest-building material in ways they learn from the parents.
- C. Nest-building behavior in hybrid lovebirds is a mixture of the parents' behaviors.
- D. Hybrid lovebirds build complex nests using smaller pieces of nest-building material.
Correct Answer & Rationale
Correct Answer: C
Hybrid lovebirds exhibit nest-building behavior that reflects a combination of their parents' distinct styles, showcasing the influence of both species in their hybrid traits. This blending of behaviors illustrates how hybridization can lead to unique adaptations. Option A is incorrect as the passage does not indicate that nest-building behavior is a reliable indicator of evolutionary relationships. Option B is misleading; while learning from parents is important, the focus is on the integration of behaviors rather than direct imitation. Option D is inaccurate; the passage does not mention the complexity of nests or the size of materials used, making this statement unsupported.
Hybrid lovebirds exhibit nest-building behavior that reflects a combination of their parents' distinct styles, showcasing the influence of both species in their hybrid traits. This blending of behaviors illustrates how hybridization can lead to unique adaptations. Option A is incorrect as the passage does not indicate that nest-building behavior is a reliable indicator of evolutionary relationships. Option B is misleading; while learning from parents is important, the focus is on the integration of behaviors rather than direct imitation. Option D is inaccurate; the passage does not mention the complexity of nests or the size of materials used, making this statement unsupported.
Which hypothesis was Dilger testing in his experiment?
- A. If hybrid offspring have a mixture of behaviors, then the species are within the same genus.
- B. If a hybrid offspring carries nesting material in its beak, then it is more closely related to modern lovebirds.
- C. If behavior in lovebirds is genetic, then a hybrid offspring will display a mixture of behaviors.
- D. If lovebird species can interbreed, then a hybrid offspring will have a mixture of behaviors.
Correct Answer & Rationale
Correct Answer: C
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.