Different types of light bulbs use different amounts of electricity. Electricity use is measured in kilowatt hours (kWh). The electricity use per hour (kWh) of an electrical device can be calculated using the following equation:
A 60W light bulb used .48 kilowatt hours of electricity. How long was the light bulb on?
- A. 0.48 hours
- B. 28.8 hours
- C. 0.125 hours
- D. 8 hours
Correct Answer & Rationale
Correct Answer: D
To determine how long the 60W light bulb was on, we first convert the energy used from kilowatt hours to watt hours: 0.48 kWh equals 480 watt hours. Using the formula: time (hours) = energy (watt hours) / power (watts), we calculate: 480 watt hours / 60 watts = 8 hours. Option A (0.48 hours) underestimates the time significantly. Option B (28.8 hours) incorrectly suggests the bulb was on much longer than the energy consumed allows. Option C (0.125 hours) miscalculates by assuming a much higher power consumption. Only option D accurately reflects the time the bulb was on based on the energy used.
To determine how long the 60W light bulb was on, we first convert the energy used from kilowatt hours to watt hours: 0.48 kWh equals 480 watt hours. Using the formula: time (hours) = energy (watt hours) / power (watts), we calculate: 480 watt hours / 60 watts = 8 hours. Option A (0.48 hours) underestimates the time significantly. Option B (28.8 hours) incorrectly suggests the bulb was on much longer than the energy consumed allows. Option C (0.125 hours) miscalculates by assuming a much higher power consumption. Only option D accurately reflects the time the bulb was on based on the energy used.
Other Related Questions
Which statement from the passage refutes Lavoisier's idea that heat is a fluid that leaves a hot substance and travels to a colder substance?
- A. He also found the brass filings produced from the drilling process contained enough heat to boil water while retaining their weight.
- B. James Joule discovered that heat could be produced by moving a wire through a magnetic field.
- C. Lavoisier demonstrated that oxygen was required for combustion.
- D. Count Rumford observed that the process of boring out cannons from brass cylinders continuously produced heat.
Correct Answer & Rationale
Correct Answer: A
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Two people are standing at the edge of a high cliff. One person throws a rock horizontally off the cliff. Which uncontrolled part of this investigation can prevent the rocks from hitting the ground at the same time?
- A. gravity
- B. mass of the rocks
- C. air resistance
- D. strength of the person
Correct Answer & Rationale
Correct Answer: C
When a rock is thrown horizontally, it is influenced by both gravity and air resistance. Gravity acts equally on both rocks, ensuring they fall at the same rate. The mass of the rocks does not affect the time it takes to hit the ground in a vacuum, as all objects fall at the same rate regardless of mass. The strength of the person throwing the rock only affects the initial horizontal velocity, not the fall time. However, air resistance can vary based on the shape and size of the rocks, potentially causing differences in descent time. Thus, air resistance is the uncontrolled factor that can prevent the rocks from hitting the ground simultaneously.
When a rock is thrown horizontally, it is influenced by both gravity and air resistance. Gravity acts equally on both rocks, ensuring they fall at the same rate. The mass of the rocks does not affect the time it takes to hit the ground in a vacuum, as all objects fall at the same rate regardless of mass. The strength of the person throwing the rock only affects the initial horizontal velocity, not the fall time. However, air resistance can vary based on the shape and size of the rocks, potentially causing differences in descent time. Thus, air resistance is the uncontrolled factor that can prevent the rocks from hitting the ground simultaneously.
Scientists can indirectly observe temperatures and insolation (the Intensity or direct solar radiation) in the distant past by measuring oxygen isotope ratios in ice cores collected from polar ice. The graph presents data for the period from what ta200.000 years ago. What time period in the graph shows the greatest correlation between Milankovitch cycles and climate?
- A. 140,000-160,000 years ago
- B. 120,000-140,000 years ago
- C. 100,000-120,000 years ago
- D. 160,000-180,000 years ago
Correct Answer & Rationale
Correct Answer: C
The time period from 100,000 to 120,000 years ago exhibits the greatest correlation between Milankovitch cycles and climate, as evidenced by significant fluctuations in temperature and insolation reflected in the oxygen isotope ratios. This interval aligns closely with the timing of glacial and interglacial periods influenced by Earth's orbital changes. Options A and B show notable climate changes, but they do not align as strongly with Milankovitch cycles, indicating less correlation. Option D, while part of the broader glacial cycle, reveals less pronounced temperature shifts, making it less relevant to the question of correlation.
The time period from 100,000 to 120,000 years ago exhibits the greatest correlation between Milankovitch cycles and climate, as evidenced by significant fluctuations in temperature and insolation reflected in the oxygen isotope ratios. This interval aligns closely with the timing of glacial and interglacial periods influenced by Earth's orbital changes. Options A and B show notable climate changes, but they do not align as strongly with Milankovitch cycles, indicating less correlation. Option D, while part of the broader glacial cycle, reveals less pronounced temperature shifts, making it less relevant to the question of correlation.
A scientist studying solubility increased the temperature of a constant volume of water and measured the amount of sugar that dissolved into solution... Which of the following describes the relationship between the independent and dependent variables?
- A. As the amount of dissolved sugar increased, the temperature of the water decreased.
- B. As the water temperature increased, the amount of dissolved sugar increased.
- C. As the amount of dissolved sugar increased, the amount of water remained constant.
- D. As the water temperature increased, the amount of water decreased.
Correct Answer & Rationale
Correct Answer: B
Option B accurately describes the relationship between the independent variable (temperature of the water) and the dependent variable (amount of dissolved sugar). As temperature rises, solubility typically increases, allowing more sugar to dissolve. Option A incorrectly suggests an inverse relationship; higher temperatures do not cause the amount of dissolved sugar to decrease. Option C, while true, does not address the relationship between the two variables in question. Option D incorrectly implies that increasing temperature leads to a decrease in water volume, which is not relevant in this context.
Option B accurately describes the relationship between the independent variable (temperature of the water) and the dependent variable (amount of dissolved sugar). As temperature rises, solubility typically increases, allowing more sugar to dissolve. Option A incorrectly suggests an inverse relationship; higher temperatures do not cause the amount of dissolved sugar to decrease. Option C, while true, does not address the relationship between the two variables in question. Option D incorrectly implies that increasing temperature leads to a decrease in water volume, which is not relevant in this context.