Choose the best answer. If necessary, use the paper you were given.
Allison drives her car at an average speed of x miles per hour for y hours and travels 150 miles. Which of the following equations represents this situation?
- A. x + y = 150
- B. xy = 150
- C. y/x = 150
- D. x/y = 150
Correct Answer & Rationale
Correct Answer: B
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
Other Related Questions
If an item regularly costs d dollars and is discounted 12 percent, which of the following represents the discounted price in dollars?
- A. 0.12d
- B. 0.88d
- C. 1.12d
- D. d-0.12
Correct Answer & Rationale
Correct Answer: B
To find the discounted price after a 12 percent discount on an item that costs d dollars, we first calculate the amount of the discount, which is 12% of d, or 0.12d. To determine the final price, we subtract this discount from the original price: d - 0.12d = 0.88d. Option A (0.12d) represents only the discount amount, not the final price. Option C (1.12d) incorrectly suggests an increase in price. Option D (d - 0.12) does not account for the percentage; it inaccurately represents the discount as a flat dollar amount rather than a percentage of the original price. Thus, 0.88d correctly reflects the discounted price.
To find the discounted price after a 12 percent discount on an item that costs d dollars, we first calculate the amount of the discount, which is 12% of d, or 0.12d. To determine the final price, we subtract this discount from the original price: d - 0.12d = 0.88d. Option A (0.12d) represents only the discount amount, not the final price. Option C (1.12d) incorrectly suggests an increase in price. Option D (d - 0.12) does not account for the percentage; it inaccurately represents the discount as a flat dollar amount rather than a percentage of the original price. Thus, 0.88d correctly reflects the discounted price.
An airplane is 5,000 ft above ground and has to land on a runway that is 7,000 ft away as shown above. Let x be the angle the pilot takes to land the airplane at the beginning of the runway. Which equation is a correct way to calculate x?
- A. sin x = 5000/7000
- B. sin x = 7000/5000
- C. tan x = 5000/7000
- D. tan x = 7/5000
Correct Answer & Rationale
Correct Answer: C
To determine the angle \( x \) for landing, we need to consider the relationship between the height of the airplane and the distance to the runway. The height (5000 ft) is the opposite side of the right triangle formed, while the distance to the runway (7000 ft) is the adjacent side. The tangent function relates these two sides, hence \( \tan x = \frac{\text{opposite}}{\text{adjacent}} \) leads to \( \tan x = \frac{5000}{7000} \). Option A incorrectly uses the sine function, which relates the opposite side to the hypotenuse. Option B also misapplies sine but swaps the sides, leading to an incorrect ratio. Option D incorrectly uses tangent but misrepresents the sides, making it invalid. Thus, option C accurately represents the relationship needed to calculate angle \( x \).
To determine the angle \( x \) for landing, we need to consider the relationship between the height of the airplane and the distance to the runway. The height (5000 ft) is the opposite side of the right triangle formed, while the distance to the runway (7000 ft) is the adjacent side. The tangent function relates these two sides, hence \( \tan x = \frac{\text{opposite}}{\text{adjacent}} \) leads to \( \tan x = \frac{5000}{7000} \). Option A incorrectly uses the sine function, which relates the opposite side to the hypotenuse. Option B also misapplies sine but swaps the sides, leading to an incorrect ratio. Option D incorrectly uses tangent but misrepresents the sides, making it invalid. Thus, option C accurately represents the relationship needed to calculate angle \( x \).
Which of the following is NOT a factor of x^4 +x^3?
- A. X
- B. X + 1
- C. X^3
- D. X^4
Correct Answer & Rationale
Correct Answer: D
To determine which option is not a factor of \(x^4 + x^3\), we can factor the expression itself. Factoring out the greatest common factor, we have \(x^3(x + 1)\). - **Option A: X** is a factor since \(x\) is part of \(x^3\). - **Option B: X + 1** is a factor as it is the remaining term after factoring \(x^3\). - **Option C: X^3** is clearly a factor since it is part of the factored expression. **Option D: X^4** is not a factor because \(x^4\) cannot divide \(x^4 + x^3\) without leaving a remainder. Thus, it does not fit into the factorization.
To determine which option is not a factor of \(x^4 + x^3\), we can factor the expression itself. Factoring out the greatest common factor, we have \(x^3(x + 1)\). - **Option A: X** is a factor since \(x\) is part of \(x^3\). - **Option B: X + 1** is a factor as it is the remaining term after factoring \(x^3\). - **Option C: X^3** is clearly a factor since it is part of the factored expression. **Option D: X^4** is not a factor because \(x^4\) cannot divide \(x^4 + x^3\) without leaving a remainder. Thus, it does not fit into the factorization.
For what values of x does 5x ^ 2 + 4x - 4 = 0 ?
- A. x = 1/5 and x = - 1
- B. x = - 4/5 and x = 1
- C. x = (- 2±6 * √(2))/5
- D. x = (- 2±2 * √(6))/5
Correct Answer & Rationale
Correct Answer: D
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.