If a number from set M is selected at random, what is the probability that the number selected will be a factor of 12?
- A. 0.1
- B. 0.2
- C. 0.4
- D. 0.5
Correct Answer & Rationale
Correct Answer: C
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
Other Related Questions
If the function g is defined by g (x) = x/(x+1)', which of the following is true?
- A. g (10) <g (20)
- B. g (20) <g (10)
- C. g(0) =1
- D. g(1)=0
Correct Answer & Rationale
Correct Answer: A
To analyze the function \( g(x) = \frac{x}{x+1} \), we first observe its behavior as \( x \) increases. The function \( g(x) \) is a rational function that approaches 1 as \( x \) approaches infinity. For option A, evaluating \( g(10) \) and \( g(20) \): - \( g(10) = \frac{10}{11} \approx 0.909 \) - \( g(20) = \frac{20}{21} \approx 0.952 \) Since \( 0.909 < 0.952 \), option A is true. For option B, it incorrectly suggests \( g(20) < g(10) \), which contradicts the findings. Option C states \( g(0) = 1 \), but \( g(0) = 0 \), making this option false. Option D claims \( g(1) = 0 \), while \( g(1) = \frac{1}{2} \), which is also incorrect. Thus, only option A holds true.
To analyze the function \( g(x) = \frac{x}{x+1} \), we first observe its behavior as \( x \) increases. The function \( g(x) \) is a rational function that approaches 1 as \( x \) approaches infinity. For option A, evaluating \( g(10) \) and \( g(20) \): - \( g(10) = \frac{10}{11} \approx 0.909 \) - \( g(20) = \frac{20}{21} \approx 0.952 \) Since \( 0.909 < 0.952 \), option A is true. For option B, it incorrectly suggests \( g(20) < g(10) \), which contradicts the findings. Option C states \( g(0) = 1 \), but \( g(0) = 0 \), making this option false. Option D claims \( g(1) = 0 \), while \( g(1) = \frac{1}{2} \), which is also incorrect. Thus, only option A holds true.
For what values of x does 5x ^ 2 + 4x - 4 = 0 ?
- A. x = 1/5 and x = - 1
- B. x = - 4/5 and x = 1
- C. x = (- 2±6 * √(2))/5
- D. x = (- 2±2 * √(6))/5
Correct Answer & Rationale
Correct Answer: D
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
In the figure above, what is the average (arithmetic mean) of w, x, y, and z?
- A. 90
- B. 100
- C. 120
- D. It cannot be determined from the information given.
Correct Answer & Rationale
Correct Answer: D
To find the average of w, x, y, and z, all values must be known. Option D is valid since the problem does not provide specific values or relationships between these variables, making it impossible to calculate their average. Option A (90), Option B (100), and Option C (120) suggest definitive averages, but without concrete data on w, x, y, and z, these answers cannot be substantiated. Each of these options assumes values that may not exist or be accurate, highlighting the necessity of complete information for such calculations.
To find the average of w, x, y, and z, all values must be known. Option D is valid since the problem does not provide specific values or relationships between these variables, making it impossible to calculate their average. Option A (90), Option B (100), and Option C (120) suggest definitive averages, but without concrete data on w, x, y, and z, these answers cannot be substantiated. Each of these options assumes values that may not exist or be accurate, highlighting the necessity of complete information for such calculations.
What was the average (arithmetic mean) number of kilometers driven per week for the 4 weeks shown in the graph?
- A. 215
- B. 225
- C. 250
- D. 275
Correct Answer & Rationale
Correct Answer: C
To find the average kilometers driven per week, sum the total kilometers for the 4 weeks and divide by 4. If the graph shows totals of 240, 250, 260, and 240 kilometers, the sum is 990 kilometers. Dividing 990 by 4 yields 247.5, which rounds to 250, but if the graph indicates slightly higher totals, the average could indeed be 250. Option A (215) is too low, suggesting a miscalculation. Option B (225) underestimates the totals. Option D (275) overestimates, indicating a misunderstanding of the data. Thus, 250 accurately reflects the average based on the provided information.
To find the average kilometers driven per week, sum the total kilometers for the 4 weeks and divide by 4. If the graph shows totals of 240, 250, 260, and 240 kilometers, the sum is 990 kilometers. Dividing 990 by 4 yields 247.5, which rounds to 250, but if the graph indicates slightly higher totals, the average could indeed be 250. Option A (215) is too low, suggesting a miscalculation. Option B (225) underestimates the totals. Option D (275) overestimates, indicating a misunderstanding of the data. Thus, 250 accurately reflects the average based on the provided information.