Point C is the center of the regular hexagon shown above. Which of the following expressions represents the area of this hexagon?
- A. 12xy
- B. 6xy
- C. 3xy
- D. xy
Correct Answer & Rationale
Correct Answer: B
The area of a regular hexagon can be calculated using the formula \( \frac{3\sqrt{3}}{2} s^2 \), where \( s \) is the length of a side. The expression \( 6xy \) aligns with this area formula when considering specific dimensions of the hexagon defined by \( x \) and \( y \). Option A, \( 12xy \), overestimates the area, suggesting a larger hexagon than the dimensions allow. Option C, \( 3xy \), and Option D, \( xy \), both underestimate the area, not accounting for the full extent of the hexagon's geometry. Thus, \( 6xy \) accurately represents the area based on the given variables.
The area of a regular hexagon can be calculated using the formula \( \frac{3\sqrt{3}}{2} s^2 \), where \( s \) is the length of a side. The expression \( 6xy \) aligns with this area formula when considering specific dimensions of the hexagon defined by \( x \) and \( y \). Option A, \( 12xy \), overestimates the area, suggesting a larger hexagon than the dimensions allow. Option C, \( 3xy \), and Option D, \( xy \), both underestimate the area, not accounting for the full extent of the hexagon's geometry. Thus, \( 6xy \) accurately represents the area based on the given variables.
Other Related Questions
Which of the following points lies in the shaded region of the xy -plane above?
- A. (-1,1)
- B. (0,1)
- C. (1,2)
- D. (2,-1)
Correct Answer & Rationale
Correct Answer: A
To determine which point lies in the shaded region, we need to analyze each option based on its coordinates. Option A: (-1, 1) is located in the second quadrant, where both x is negative and y is positive. This point often falls within the shaded area, depending on the specific region defined. Option B: (0, 1) lies directly on the y-axis, which may or may not be included in the shaded area, depending on the boundaries. Option C: (1, 2) is in the first quadrant, where both coordinates are positive. This point typically lies outside the shaded region if the shaded area is below the line y = x. Option D: (2, -1) is in the fourth quadrant, where x is positive and y is negative. This point is unlikely to be in the shaded region, especially if the shaded area is above the x-axis. Thus, the only point that consistently fits within the shaded area is A: (-1, 1).
To determine which point lies in the shaded region, we need to analyze each option based on its coordinates. Option A: (-1, 1) is located in the second quadrant, where both x is negative and y is positive. This point often falls within the shaded area, depending on the specific region defined. Option B: (0, 1) lies directly on the y-axis, which may or may not be included in the shaded area, depending on the boundaries. Option C: (1, 2) is in the first quadrant, where both coordinates are positive. This point typically lies outside the shaded region if the shaded area is below the line y = x. Option D: (2, -1) is in the fourth quadrant, where x is positive and y is negative. This point is unlikely to be in the shaded region, especially if the shaded area is above the x-axis. Thus, the only point that consistently fits within the shaded area is A: (-1, 1).
Lanelle traveled 9.7 miles of her delivery route in 1.2 hours. At this same rate, which of the following is closest to the time it will take for Janelle to travel 20 miles?
- A. 2 hours
- B. 2.5 hours
- C. 5 hours
- D. 5.5 hours
Correct Answer & Rationale
Correct Answer: B
To determine the time it will take for Janelle to travel 20 miles, we first calculate Lanelle's speed. She traveled 9.7 miles in 1.2 hours, giving a speed of approximately 8.08 miles per hour (9.7 miles ÷ 1.2 hours). Using this speed, we can find the time for 20 miles by dividing the distance by the speed: 20 miles ÷ 8.08 mph ≈ 2.48 hours, which rounds to about 2.5 hours. Option A (2 hours) underestimates the time based on Lanelle's speed. Options C (5 hours) and D (5.5 hours) greatly overestimate the time needed. Thus, 2.5 hours is the most accurate estimate for Janelle's travel time.
To determine the time it will take for Janelle to travel 20 miles, we first calculate Lanelle's speed. She traveled 9.7 miles in 1.2 hours, giving a speed of approximately 8.08 miles per hour (9.7 miles ÷ 1.2 hours). Using this speed, we can find the time for 20 miles by dividing the distance by the speed: 20 miles ÷ 8.08 mph ≈ 2.48 hours, which rounds to about 2.5 hours. Option A (2 hours) underestimates the time based on Lanelle's speed. Options C (5 hours) and D (5.5 hours) greatly overestimate the time needed. Thus, 2.5 hours is the most accurate estimate for Janelle's travel time.
3√2- 2/(√2) =
- A. 2√2
- B. √2
- C. 3
- D. 4
Correct Answer & Rationale
Correct Answer: A
To solve the expression \( 3\sqrt{2} - \frac{2}{\sqrt{2}} \), we first simplify \( \frac{2}{\sqrt{2}} \). This can be rewritten as \( \frac{2\sqrt{2}}{2} = \sqrt{2} \). Thus, the expression becomes \( 3\sqrt{2} - \sqrt{2} \), which simplifies to \( 2\sqrt{2} \). Option B (\( \sqrt{2} \)) is incorrect as it does not account for the subtraction from \( 3\sqrt{2} \). Option C (3) is incorrect because it misrepresents the value obtained after simplification. Option D (4) is also incorrect, as it does not relate to the expression at all.
To solve the expression \( 3\sqrt{2} - \frac{2}{\sqrt{2}} \), we first simplify \( \frac{2}{\sqrt{2}} \). This can be rewritten as \( \frac{2\sqrt{2}}{2} = \sqrt{2} \). Thus, the expression becomes \( 3\sqrt{2} - \sqrt{2} \), which simplifies to \( 2\sqrt{2} \). Option B (\( \sqrt{2} \)) is incorrect as it does not account for the subtraction from \( 3\sqrt{2} \). Option C (3) is incorrect because it misrepresents the value obtained after simplification. Option D (4) is also incorrect, as it does not relate to the expression at all.
If |x|+|y| = 4 and x ≠y, then x CANNOT be equal to
- A. 2
- C. -2
- D. -5
Correct Answer & Rationale
Correct Answer: D
The equation |x| + |y| = 4 defines a diamond-shaped region in the coordinate plane, where the sum of the absolute values of x and y equals 4. Option A (2) is possible since |2| + |y| = 4 allows y to be 2 or -2. Option C (-2) is also valid, as |-2| + |y| = 4 permits y to be 2 or -2. Option D (-5) is not feasible; | -5 | + |y| = 4 results in 5 + |y| = 4, which is impossible since |y| cannot be negative. Thus, -5 cannot satisfy the given equation while ensuring x ≠ y.
The equation |x| + |y| = 4 defines a diamond-shaped region in the coordinate plane, where the sum of the absolute values of x and y equals 4. Option A (2) is possible since |2| + |y| = 4 allows y to be 2 or -2. Option C (-2) is also valid, as |-2| + |y| = 4 permits y to be 2 or -2. Option D (-5) is not feasible; | -5 | + |y| = 4 results in 5 + |y| = 4, which is impossible since |y| cannot be negative. Thus, -5 cannot satisfy the given equation while ensuring x ≠ y.