tsia2 math practice test

A placement test used in Texas to assess a student's readiness for college-level coursework in math, reading, and writing.

Choose the best answer. If necessary, use the paper you were given.
The expressions x - 2 and x + 3 represent the length and width of a rectangle, respectively. If the area of the rectangle is 24, what is the perimeter of the rectangle?
  • A. 20
  • B. 22
  • C. 24
  • D. 28
Correct Answer & Rationale
Correct Answer: B

To find the perimeter of the rectangle, first calculate its dimensions using the area formula. The area is given by multiplying length and width: \[ (x - 2)(x + 3) = 24 \] Expanding this, we get: \[ x^2 + x - 6 = 24 \implies x^2 + x - 30 = 0 \] Factoring yields: \[ (x - 5)(x + 6) = 0 \implies x = 5 \text{ (valid)} \text{ or } x = -6 \text{ (not valid)} \] Using \(x = 5\), the dimensions are \(3\) (length) and \(8\) (width). The perimeter is: \[ 2(3 + 8) = 22 \] Options A (20), C (24), and D (28) do not match the calculated perimeter of 22, confirming they are incorrect.

Other Related Questions

What is the range of her scores?
  • A. 100
  • B. 120
  • C. 440
  • D. 2,250
Correct Answer & Rationale
Correct Answer: B

To determine the range of her scores, we subtract the lowest score from the highest score. If the highest score is 220 and the lowest is 100, the calculation is 220 - 100 = 120, which represents the range. Option A (100) misrepresents the range as it does not account for the difference between the highest and lowest scores. Option C (440) and Option D (2,250) are excessively high and do not reflect the actual spread of scores based on the provided data. Thus, 120 accurately represents the range of her scores.
The system of equations above has how many solutions? x+4y=3, 2x+8y=4
  • A. None
  • B. One
  • C. Two
  • D. Infinitely many
Correct Answer & Rationale
Correct Answer: A

To determine the number of solutions for the system of equations, we first analyze the equations: \(x + 4y = 3\) and \(2x + 8y = 4\). The second equation can be simplified by dividing all terms by 2, resulting in \(x + 4y = 2\). Now, we have two equations: \(x + 4y = 3\) and \(x + 4y = 2\). Since both equations represent parallel lines (same slope, different y-intercepts), they will never intersect, indicating there are no solutions. Option B suggests one solution, which is incorrect as parallel lines do not meet. Option C suggests two solutions, which is also incorrect for the same reason. Option D proposes infinitely many solutions, which applies only to identical lines, not parallel ones. Thus, the system has no solutions.
If the values of x and y are negative, which of the following values must be positive?
  • A. x²-y²
  • B. x/y
  • C. x+y
  • D. x-y
Correct Answer & Rationale
Correct Answer: B

When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
Which of the following is NOT a factor of x^4 +x^3?
  • A. X
  • B. X + 1
  • C. X^3
  • D. X^4
Correct Answer & Rationale
Correct Answer: D

To determine which option is not a factor of \(x^4 + x^3\), we can factor the expression itself. Factoring out the greatest common factor, we have \(x^3(x + 1)\). - **Option A: X** is a factor since \(x\) is part of \(x^3\). - **Option B: X + 1** is a factor as it is the remaining term after factoring \(x^3\). - **Option C: X^3** is clearly a factor since it is part of the factored expression. **Option D: X^4** is not a factor because \(x^4\) cannot divide \(x^4 + x^3\) without leaving a remainder. Thus, it does not fit into the factorization.