Choose the best answer. If necessary, use the paper you were given.
The expressions x - 2 and x + 3 represent the length and width of a rectangle, respectively. If the area of the rectangle is 24, what is the perimeter of the rectangle?
- A. 20
- B. 22
- C. 24
- D. 28
Correct Answer & Rationale
Correct Answer: B
To find the perimeter of the rectangle, first calculate its dimensions using the area formula. The area is given by multiplying length and width: \[ (x - 2)(x + 3) = 24 \] Expanding this, we get: \[ x^2 + x - 6 = 24 \implies x^2 + x - 30 = 0 \] Factoring yields: \[ (x - 5)(x + 6) = 0 \implies x = 5 \text{ (valid)} \text{ or } x = -6 \text{ (not valid)} \] Using \(x = 5\), the dimensions are \(3\) (length) and \(8\) (width). The perimeter is: \[ 2(3 + 8) = 22 \] Options A (20), C (24), and D (28) do not match the calculated perimeter of 22, confirming they are incorrect.
To find the perimeter of the rectangle, first calculate its dimensions using the area formula. The area is given by multiplying length and width: \[ (x - 2)(x + 3) = 24 \] Expanding this, we get: \[ x^2 + x - 6 = 24 \implies x^2 + x - 30 = 0 \] Factoring yields: \[ (x - 5)(x + 6) = 0 \implies x = 5 \text{ (valid)} \text{ or } x = -6 \text{ (not valid)} \] Using \(x = 5\), the dimensions are \(3\) (length) and \(8\) (width). The perimeter is: \[ 2(3 + 8) = 22 \] Options A (20), C (24), and D (28) do not match the calculated perimeter of 22, confirming they are incorrect.
Other Related Questions
Which of the following is a factor of u²+uv-2v²?
- A. (u-v)
- B. (2u-v)
- C. (u-2v)
- D. (u+v)
Correct Answer & Rationale
Correct Answer: C
To determine the factors of \( u^2 + uv - 2v^2 \), we can factor the expression. Option C, \( (u - 2v) \), is a valid factor. When we perform polynomial long division or synthetic division using \( (u - 2v) \), we find that it divides evenly, confirming it as a factor. Option A, \( (u - v) \), does not satisfy the factorization, as substituting \( v \) does not yield a zero remainder. Option B, \( (2u - v) \), also fails to factor the expression correctly, leading to a non-zero remainder upon division. Option D, \( (u + v) \), similarly does not yield a zero remainder, confirming it is not a factor. Thus, only \( (u - 2v) \) is a valid factor of the expression.
To determine the factors of \( u^2 + uv - 2v^2 \), we can factor the expression. Option C, \( (u - 2v) \), is a valid factor. When we perform polynomial long division or synthetic division using \( (u - 2v) \), we find that it divides evenly, confirming it as a factor. Option A, \( (u - v) \), does not satisfy the factorization, as substituting \( v \) does not yield a zero remainder. Option B, \( (2u - v) \), also fails to factor the expression correctly, leading to a non-zero remainder upon division. Option D, \( (u + v) \), similarly does not yield a zero remainder, confirming it is not a factor. Thus, only \( (u - 2v) \) is a valid factor of the expression.
In triangle ABC above, AC ||DE. If AD = 2x - 1 and AC = 3x - 1 , what is the value of x ?
- A. 3
- B. 4
- C. 5
- D. 6
Correct Answer & Rationale
Correct Answer: A
In triangle ABC, since AC is parallel to DE, the segments AD and AC are proportional. This relationship can be expressed as AD = AC. Substituting the expressions gives us the equation: 2x - 1 = 3x - 1. Solving for x, we simplify to 2x - 3x = -1 + 1, leading to -x = 0, or x = 3. Option B (4), C (5), and D (6) do not satisfy the equation derived from the parallel lines, making them incorrect. Only x = 3 maintains the equality, confirming the proportional relationship in the triangle.
In triangle ABC, since AC is parallel to DE, the segments AD and AC are proportional. This relationship can be expressed as AD = AC. Substituting the expressions gives us the equation: 2x - 1 = 3x - 1. Solving for x, we simplify to 2x - 3x = -1 + 1, leading to -x = 0, or x = 3. Option B (4), C (5), and D (6) do not satisfy the equation derived from the parallel lines, making them incorrect. Only x = 3 maintains the equality, confirming the proportional relationship in the triangle.
The average of 4 numbers is 9. If one of the numbers is 7, what is the sum of the other 3 numbers?
- A. 2
- B. 12
- C. 29
- D. 36
Correct Answer & Rationale
Correct Answer: C
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.
Which of the following is equivalent to 12x +8?
- A. 4(3x+2)
- B. 4(3x+8)
- C. 4(3x+2x)
- D. 20x
Correct Answer & Rationale
Correct Answer: A
To determine the equivalent expression for \(12x + 8\), we can factor out the greatest common factor, which is 4. Option A, \(4(3x + 2)\), simplifies to \(12x + 8\) when distributed, making it equivalent to the original expression. Option B, \(4(3x + 8)\), simplifies to \(12x + 32\), which is not equivalent. Option C, \(4(3x + 2x)\), simplifies to \(4(5x)\) or \(20x\), which is also not equivalent. Option D, \(20x\), does not match the original expression either. Thus, only option A is correct.
To determine the equivalent expression for \(12x + 8\), we can factor out the greatest common factor, which is 4. Option A, \(4(3x + 2)\), simplifies to \(12x + 8\) when distributed, making it equivalent to the original expression. Option B, \(4(3x + 8)\), simplifies to \(12x + 32\), which is not equivalent. Option C, \(4(3x + 2x)\), simplifies to \(4(5x)\) or \(20x\), which is also not equivalent. Option D, \(20x\), does not match the original expression either. Thus, only option A is correct.