The graph shows data for a 5-hour glucose tolerance test for four patients.
Symptoms of a patient with diabetes during a 5-hour glucose tolerance test include a high blood-glucose level that increases quickly and then decreases only minimally over the 5-hour period. Which patient displays symptoms of diabetes?
- A. patient 2
- B. patient 1
- C. patient 4
- D. patient 3
Correct Answer & Rationale
Correct Answer: C
Patient 4 exhibits a rapid increase in blood glucose levels followed by a minimal decrease over the 5-hour test, indicating poor glucose regulation typical of diabetes. This pattern reflects the body's inability to effectively utilize insulin. In contrast, Patient 1 shows a quick rise followed by a significant decline, suggesting normal glucose metabolism. Patient 2 may demonstrate a slight increase but returns to baseline, indicating no diabetes. Patient 3's levels remain stable, which is also indicative of normal glucose tolerance. Thus, only Patient 4 aligns with the expected symptoms of diabetes during the test.
Patient 4 exhibits a rapid increase in blood glucose levels followed by a minimal decrease over the 5-hour test, indicating poor glucose regulation typical of diabetes. This pattern reflects the body's inability to effectively utilize insulin. In contrast, Patient 1 shows a quick rise followed by a significant decline, suggesting normal glucose metabolism. Patient 2 may demonstrate a slight increase but returns to baseline, indicating no diabetes. Patient 3's levels remain stable, which is also indicative of normal glucose tolerance. Thus, only Patient 4 aligns with the expected symptoms of diabetes during the test.
Other Related Questions
For an emergency service call, a plumbing company charges a flat fee of $60 plus $40 an hour. A customer remembers paying at least $200 for an emergency service. Which phrase describes the number of hours the plumbing company was at the service call?
- A. at most 2 hours
- B. at most 3.5 hours
- C. at least 3.5 hours
- D. at least 2 hours
Correct Answer & Rationale
Correct Answer: C
To determine the number of hours the plumbing company was on the service call, we start with the total charge of at least $200. The charge consists of a flat fee of $60 plus $40 per hour. First, subtract the flat fee from the total: $200 - $60 = $140. Next, divide this by the hourly rate: $140 ÷ $40 = 3.5 hours. This indicates that the service lasted at least 3.5 hours. Option A (at most 2 hours) is incorrect, as 2 hours would only cost $140. Option B (at most 3.5 hours) is misleading, as it does not account for the minimum time needed to reach $200. Option D (at least 2 hours) is true but does not reflect the minimum threshold of 3.5 hours. Thus, the most accurate description is that the service lasted at least 3.5 hours.
To determine the number of hours the plumbing company was on the service call, we start with the total charge of at least $200. The charge consists of a flat fee of $60 plus $40 per hour. First, subtract the flat fee from the total: $200 - $60 = $140. Next, divide this by the hourly rate: $140 ÷ $40 = 3.5 hours. This indicates that the service lasted at least 3.5 hours. Option A (at most 2 hours) is incorrect, as 2 hours would only cost $140. Option B (at most 3.5 hours) is misleading, as it does not account for the minimum time needed to reach $200. Option D (at least 2 hours) is true but does not reflect the minimum threshold of 3.5 hours. Thus, the most accurate description is that the service lasted at least 3.5 hours.
Kelly has a home business making jewellery. It takes 2 hours for her to make each bracelet and 3.5 hours to make each necklace. Next month she plans to spend 140 hours to make jewellery. If she fills a special order for 22 bracelets at the beginning of the mouth and spends the rest of the month making necklaces, how many necklaces can Kelly make in the month
- A. 52
- B. 27
- C. 40
- D. 31
Correct Answer & Rationale
Correct Answer: B
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 ÷ 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 ÷ 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.
What is the volume, in cubic inches, of the pyramid?
- A. 21,600
- B. 1,440
- C. 7,200
- D. 5,760
Correct Answer & Rationale
Correct Answer: C
To find the volume of a pyramid, the formula used is \( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \). In this case, with the appropriate base area and height values, the calculation leads to a volume of 7,200 cubic inches. Option A, 21,600, is too high, suggesting an error in calculations or misinterpretation of the dimensions. Option B, 1,440, underestimates the volume, likely due to incorrect base area or height. Option D, 5,760, also falls short, as it does not account for the correct scaling of the dimensions. Thus, 7,200 cubic inches accurately reflects the pyramid's volume based on the given measurements.
To find the volume of a pyramid, the formula used is \( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \). In this case, with the appropriate base area and height values, the calculation leads to a volume of 7,200 cubic inches. Option A, 21,600, is too high, suggesting an error in calculations or misinterpretation of the dimensions. Option B, 1,440, underestimates the volume, likely due to incorrect base area or height. Option D, 5,760, also falls short, as it does not account for the correct scaling of the dimensions. Thus, 7,200 cubic inches accurately reflects the pyramid's volume based on the given measurements.
Solve the inequality for x: (1/8)x ? (1/2)x + 15
- A. x ? -24
- B. x ? -40
- C. x ? -40
- D. x ? -24
Correct Answer & Rationale
Correct Answer: C
To solve the inequality \((1/8)x < (1/2)x + 15\), first, subtract \((1/2)x\) from both sides, yielding \(-\frac{3}{8}x < 15\). Next, multiply both sides by \(-\frac{8}{3}\) (remembering to reverse the inequality), resulting in \(x > -40\). Option A (\(x < -24\)) and Option D (\(x < -24\)) suggest \(x\) values that are too high, contradicting the derived solution. Option B (\(x < -40\)) incorrectly indicates that \(x\) must be less than \(-40\), rather than greater. Thus, Option C accurately represents the solution \(x > -40\).
To solve the inequality \((1/8)x < (1/2)x + 15\), first, subtract \((1/2)x\) from both sides, yielding \(-\frac{3}{8}x < 15\). Next, multiply both sides by \(-\frac{8}{3}\) (remembering to reverse the inequality), resulting in \(x > -40\). Option A (\(x < -24\)) and Option D (\(x < -24\)) suggest \(x\) values that are too high, contradicting the derived solution. Option B (\(x < -40\)) incorrectly indicates that \(x\) must be less than \(-40\), rather than greater. Thus, Option C accurately represents the solution \(x > -40\).