ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

Which graph shows a line described by 4x - 3y = 12?
  • A. M-97A.png
  • B. M-97B.png
  • C. M-97C.png
  • D. M-97D.png
Correct Answer & Rationale
Correct Answer: D

To determine which graph represents the line described by the equation 4x - 3y = 12, we can rearrange it into slope-intercept form (y = mx + b). This yields y = (4/3)x - 4. The slope (m) is 4/3, indicating the line rises 4 units for every 3 units it runs to the right, and the y-intercept (b) is -4, meaning the line crosses the y-axis at (0, -4). Option D correctly displays a line with a positive slope and a y-intercept at -4. Options A, B, and C either have the wrong slope or intercept, indicating they do not accurately represent the given equation.

Other Related Questions

What is the slope of the line shown on the graph
Question image
  • A. -0.333333333
  • B. -3
  • C. 3
  • D. 1\3
Correct Answer & Rationale
Correct Answer: D

The slope of a line represents the change in y over the change in x (rise over run). Option D, \( \frac{1}{3} \), indicates a positive slope, suggesting that for every 3 units moved horizontally to the right, the line rises by 1 unit vertically. Option A, -0.3333, represents a negative slope, which would indicate a decline rather than an ascent. Option B, -3, also indicates a steep negative slope, suggesting a significant drop. Option C, 3, indicates a positive slope but is too steep compared to the graph's gentle incline. Thus, D accurately reflects the line's moderate upward trend.
A scale drawing of a truck has a length of 3 inches (in.), as shown below. The actual truck has a length of 18 feet (ft). What scale was used for the drawing?
Question image
  • A. 6 in. = 1 ft
  • B. 1 in. = 15 ft
  • C. 1 in. = 6 ft
  • D. 15 in. = 1 ft
Correct Answer & Rationale
Correct Answer: C

To determine the scale used for the drawing, we first convert the actual truck length from feet to inches. Since 1 foot equals 12 inches, an 18-foot truck is 216 inches long (18 ft x 12 in/ft). The scale drawing shows a length of 3 inches. To find the scale, we set up the ratio of the drawing length to the actual length: 3 in. (drawing) to 216 in. (actual). Simplifying this gives us a scale of 1 in. = 72 in., which translates to 1 in. = 6 ft (since 72 in. ÷ 12 in/ft = 6 ft). Option A (6 in. = 1 ft) is incorrect; it implies a much larger drawing. Option B (1 in. = 15 ft) underestimates the actual size. Option D (15 in. = 1 ft) greatly exaggerates the scale, making the drawing too small.
An expression for a company's cost to make n bicycles is -0.017n? - 6.8n + 690. An expression for the revenue from selling these n bicycles is 70n. Profit is revenue minus cost. Which is an expression for the profit for making and selling n bicycles?
  • A. -0.017n^2 - 76.8n + 690
  • B. 0.017n^2 + 76.8n - 690
  • C. 0.017n^2 + 63.2n + 690
  • D. -0.017n^2 + 63.2n + 690
Correct Answer & Rationale
Correct Answer: D

To find the profit from selling n bicycles, subtract the cost expression from the revenue expression. The cost is given as -0.017n² - 6.8n + 690, and the revenue is 70n. Calculating profit: Profit = Revenue - Cost = 70n - (-0.017n² - 6.8n + 690) simplifies to 70n + 0.017n² + 6.8n - 690, which results in 0.017n² + 63.2n - 690. Option D, -0.017n² + 63.2n + 690, incorrectly presents the quadratic term with the wrong sign. Options A and B incorrectly combine terms or misrepresent the coefficients. Option C miscalculates the constant term. Thus, only option D maintains the correct profit structure.
A diver jumps from a platform. The height, h meters, the diver is above the water t seconds after jumping is represented by h = -16t^2 + 16t + 6.5. To the near hundredth of a second, how many seconds after jumping is the diver 2.5 meters above the water?
  • A. 2.79
  • B. 1.32
  • C. 2.83
  • D. 1.21
Correct Answer & Rationale
Correct Answer: D

To find when the diver is 2.5 meters above the water, substitute h = 2.5 into the equation: \[ 2.5 = -16t^2 + 16t + 6.5. \] Rearranging gives: \[ -16t^2 + 16t + 4 = 0. \] Using the quadratic formula, we solve for t, yielding two potential solutions. The option D (1.21 seconds) is valid as it falls within the realistic time frame of the jump. Options A (2.79) and C (2.83) exceed the expected time of descent, while B (1.32) does not satisfy the equation, confirming that only D accurately represents the diver's position at 2.5 meters above the water.