36 pencils in equal groups? Select THREE.
- A. 3
- B. 4
- C. 5
- D. 6
- E. 8
Correct Answer & Rationale
Correct Answer: A,B,D
To determine how many equal groups can be formed from 36 pencils, we need to identify the factors of 36. Option A (3) is valid because 36 ÷ 3 = 12, resulting in 12 pencils per group. Option B (4) is also correct since 36 ÷ 4 = 9, yielding 9 pencils per group. Option D (6) works as well, as 36 ÷ 6 = 6, giving 6 pencils per group. Options C (5) and E (8) are incorrect because 36 is not divisible by 5 (36 ÷ 5 = 7.2, which is not a whole number) and 8 (36 ÷ 8 = 4.5, also not a whole number). Thus, only 3, 4, and 6 are valid factors of 36.
To determine how many equal groups can be formed from 36 pencils, we need to identify the factors of 36. Option A (3) is valid because 36 ÷ 3 = 12, resulting in 12 pencils per group. Option B (4) is also correct since 36 ÷ 4 = 9, yielding 9 pencils per group. Option D (6) works as well, as 36 ÷ 6 = 6, giving 6 pencils per group. Options C (5) and E (8) are incorrect because 36 is not divisible by 5 (36 ÷ 5 = 7.2, which is not a whole number) and 8 (36 ÷ 8 = 4.5, also not a whole number). Thus, only 3, 4, and 6 are valid factors of 36.
Other Related Questions
1.085/12 value?
- A. 90
- B. 90 * 5/1.085
- C. 90 * 5/12
- D. 90.5
Correct Answer & Rationale
Correct Answer: C
To find the value of 1.085/12, we need to simplify the expression. Option C, 90 * 5/12, correctly represents a simplified fraction of 90 divided by 12, multiplied by 5. This yields a value consistent with the original division. Option A (90) is incorrect as it does not involve the division by 12. Option B (90 * 5/1.085) incorrectly uses 1.085 as a divisor instead of 12, leading to an inaccurate calculation. Option D (90.5) is also incorrect as it does not relate to the division of 1.085 by 12, resulting in a value that does not reflect the operation required.
To find the value of 1.085/12, we need to simplify the expression. Option C, 90 * 5/12, correctly represents a simplified fraction of 90 divided by 12, multiplied by 5. This yields a value consistent with the original division. Option A (90) is incorrect as it does not involve the division by 12. Option B (90 * 5/1.085) incorrectly uses 1.085 as a divisor instead of 12, leading to an inaccurate calculation. Option D (90.5) is also incorrect as it does not relate to the division of 1.085 by 12, resulting in a value that does not reflect the operation required.
Shaded region shows?
- A. 3/4 x 1/2
- B. 3/4 x 3/4
- C. 3/4 x 3/2
- D. 3/4 x 3
Correct Answer & Rationale
Correct Answer: A
The shaded region represents the area of a rectangle formed by multiplying two fractions. Option A, \( \frac{3}{4} \times \frac{1}{2} \), correctly calculates the area of a rectangle with a length of \( \frac{3}{4} \) and a width of \( \frac{1}{2} \), resulting in \( \frac{3}{8} \). Option B, \( \frac{3}{4} \times \frac{3}{4} \), represents a larger area, \( \frac{9}{16} \), which does not match the shaded region. Option C, \( \frac{3}{4} \times \frac{3}{2} \), yields \( \frac{9}{8} \), exceeding the shaded area. Finally, option D, \( \frac{3}{4} \times 3 \), results in \( \frac{9}{4} \), also too large. Thus, only option A accurately reflects the area of the shaded region.
The shaded region represents the area of a rectangle formed by multiplying two fractions. Option A, \( \frac{3}{4} \times \frac{1}{2} \), correctly calculates the area of a rectangle with a length of \( \frac{3}{4} \) and a width of \( \frac{1}{2} \), resulting in \( \frac{3}{8} \). Option B, \( \frac{3}{4} \times \frac{3}{4} \), represents a larger area, \( \frac{9}{16} \), which does not match the shaded region. Option C, \( \frac{3}{4} \times \frac{3}{2} \), yields \( \frac{9}{8} \), exceeding the shaded area. Finally, option D, \( \frac{3}{4} \times 3 \), results in \( \frac{9}{4} \), also too large. Thus, only option A accurately reflects the area of the shaded region.
Order 0.68, 1/12, 1(1/5), 3/5 least to greatest?
- A. 1(1/5), 0.68, 3/5, 1/12
- B. 1/12, 3/5, 0.68, 1(1/5)
- C. 1/12, 0.68, 3/5, 1(1/5)
- D. 0.68, 1/12, 3/5, 1(1/5)
Correct Answer & Rationale
Correct Answer: B
To compare the values, first convert them to a common format. - 1(1/5) equals 1.2. - 0.68 remains as is. - 3/5 converts to 0.6. - 1/12 is approximately 0.0833. Ordering these from least to greatest gives: 1/12 (0.0833), 3/5 (0.6), 0.68, and 1(1/5) (1.2). Option A incorrectly places 1(1/5) first, while C misplaces 3/5 and 0.68. Option D also misorders the values by placing 0.68 before 1/12. Thus, B accurately reflects the correct sequence of values.
To compare the values, first convert them to a common format. - 1(1/5) equals 1.2. - 0.68 remains as is. - 3/5 converts to 0.6. - 1/12 is approximately 0.0833. Ordering these from least to greatest gives: 1/12 (0.0833), 3/5 (0.6), 0.68, and 1(1/5) (1.2). Option A incorrectly places 1(1/5) first, while C misplaces 3/5 and 0.68. Option D also misorders the values by placing 0.68 before 1/12. Thus, B accurately reflects the correct sequence of values.
3/4 as sum of unit fractions?
- A. 1/8 + 1/8 + 1/8 + 1/4 + 1/4
- B. 2/8 + 1/4 + 4/16
- C. 5/8 + 2/16
- D. 1/2 + 1/4
Correct Answer & Rationale
Correct Answer: D
To express \( \frac{3}{4} \) as a sum of unit fractions, each option must be evaluated for its total. Option A totals \( \frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{4}{8} = \frac{7}{8} \), which exceeds \( \frac{3}{4} \). Option B simplifies to \( \frac{2}{8} + \frac{2}{8} + \frac{1}{4} = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = \frac{6}{8} = \frac{3}{4} \), but includes non-unit fractions. Option C simplifies to \( \frac{5}{8} + \frac{1}{4} = \frac{5}{8} + \frac{2}{8} = \frac{7}{8} \), again exceeding \( \frac{3}{4} \). Option D correctly adds \( \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \) using unit fractions only.
To express \( \frac{3}{4} \) as a sum of unit fractions, each option must be evaluated for its total. Option A totals \( \frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{4}{8} = \frac{7}{8} \), which exceeds \( \frac{3}{4} \). Option B simplifies to \( \frac{2}{8} + \frac{2}{8} + \frac{1}{4} = \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = \frac{6}{8} = \frac{3}{4} \), but includes non-unit fractions. Option C simplifies to \( \frac{5}{8} + \frac{1}{4} = \frac{5}{8} + \frac{2}{8} = \frac{7}{8} \), again exceeding \( \frac{3}{4} \). Option D correctly adds \( \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \) using unit fractions only.