Choose the best answer. If necessary, use the paper you were given.
A bowl contains 6 green grapes, 10 red grapes, and 8 black grapes.Which of the following is the correct calculation for the probability of choosing a red grape and then without putting the red grape back into the bowl, choosing a green grape?
- A. 10/24+6/24
- B. 10/24+6/23
- C. 10/24*6/24
- D. 10/24*6/23
Correct Answer & Rationale
Correct Answer: D
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
Other Related Questions
Which of the following is equivalent to 12x +8?
- A. 4(3x+2)
- B. 4(3x+8)
- C. 4(3x+2x)
- D. 20x
Correct Answer & Rationale
Correct Answer: A
To determine the equivalent expression for \(12x + 8\), we can factor out the greatest common factor, which is 4. Option A, \(4(3x + 2)\), simplifies to \(12x + 8\) when distributed, making it equivalent to the original expression. Option B, \(4(3x + 8)\), simplifies to \(12x + 32\), which is not equivalent. Option C, \(4(3x + 2x)\), simplifies to \(4(5x)\) or \(20x\), which is also not equivalent. Option D, \(20x\), does not match the original expression either. Thus, only option A is correct.
To determine the equivalent expression for \(12x + 8\), we can factor out the greatest common factor, which is 4. Option A, \(4(3x + 2)\), simplifies to \(12x + 8\) when distributed, making it equivalent to the original expression. Option B, \(4(3x + 8)\), simplifies to \(12x + 32\), which is not equivalent. Option C, \(4(3x + 2x)\), simplifies to \(4(5x)\) or \(20x\), which is also not equivalent. Option D, \(20x\), does not match the original expression either. Thus, only option A is correct.
The system of equations above has how many solutions? x+4y=3, 2x+8y=4
- A. None
- B. One
- C. Two
- D. Infinitely many
Correct Answer & Rationale
Correct Answer: A
To determine the number of solutions for the system of equations, we first analyze the equations: \(x + 4y = 3\) and \(2x + 8y = 4\). The second equation can be simplified by dividing all terms by 2, resulting in \(x + 4y = 2\). Now, we have two equations: \(x + 4y = 3\) and \(x + 4y = 2\). Since both equations represent parallel lines (same slope, different y-intercepts), they will never intersect, indicating there are no solutions. Option B suggests one solution, which is incorrect as parallel lines do not meet. Option C suggests two solutions, which is also incorrect for the same reason. Option D proposes infinitely many solutions, which applies only to identical lines, not parallel ones. Thus, the system has no solutions.
To determine the number of solutions for the system of equations, we first analyze the equations: \(x + 4y = 3\) and \(2x + 8y = 4\). The second equation can be simplified by dividing all terms by 2, resulting in \(x + 4y = 2\). Now, we have two equations: \(x + 4y = 3\) and \(x + 4y = 2\). Since both equations represent parallel lines (same slope, different y-intercepts), they will never intersect, indicating there are no solutions. Option B suggests one solution, which is incorrect as parallel lines do not meet. Option C suggests two solutions, which is also incorrect for the same reason. Option D proposes infinitely many solutions, which applies only to identical lines, not parallel ones. Thus, the system has no solutions.
If a number from set M is selected at random, what is the probability that the number selected will be a factor of 12?
- A. 0.1
- B. 0.2
- C. 0.4
- D. 0.5
Correct Answer & Rationale
Correct Answer: C
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
Which of the following must be true?
- A. 4x-3=26
- B. 4x-1=26
- C. 5x-1=26
- D. 5x+1=26
Correct Answer & Rationale
Correct Answer: A
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.