If a +√x= b then x =
- A. √b-√a
- B. √(b-1)
- C. (b-a)²
- D. b²-a²
Correct Answer & Rationale
Correct Answer: C
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
Other Related Questions
If the values of x and y are negative, which of the following values must be positive?
- A. x²-y²
- B. x/y
- C. x+y
- D. x-y
Correct Answer & Rationale
Correct Answer: B
When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
Allison drives her car at an average speed of x miles per hour for y hours and travels 150 miles. Which of the following equations represents this situation?
- A. x + y = 150
- B. xy = 150
- C. y/x = 150
- D. x/y = 150
Correct Answer & Rationale
Correct Answer: B
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
Which of the following represents the cost, in dollars, of renting a car for d days and driving m miles?
- A. 45+.25+ d+m
- B. 45.25+ dm
- C. 45d +.25m
- D. 45/d +25/m
Correct Answer & Rationale
Correct Answer: C
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
During a sale, the regular price of a pair of running shoes is reduced by 20 percent. $64.00, what is the regular price of the running shoes?
- A. $48.00
- B. $51.20
- C. $76.80
- D. $80.00
Correct Answer & Rationale
Correct Answer: D
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.