Which of the following must be true?
- A. 4x-3=26
- B. 4x-1=26
- C. 5x-1=26
- D. 5x+1=26
Correct Answer & Rationale
Correct Answer: A
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.
Other Related Questions
In triangle ABC above, AC ||DE. If AD = 2x - 1 and AC = 3x - 1 , what is the value of x ?
- A. 3
- B. 4
- C. 5
- D. 6
Correct Answer & Rationale
Correct Answer: A
In triangle ABC, since AC is parallel to DE, the segments AD and AC are proportional. This relationship can be expressed as AD = AC. Substituting the expressions gives us the equation: 2x - 1 = 3x - 1. Solving for x, we simplify to 2x - 3x = -1 + 1, leading to -x = 0, or x = 3. Option B (4), C (5), and D (6) do not satisfy the equation derived from the parallel lines, making them incorrect. Only x = 3 maintains the equality, confirming the proportional relationship in the triangle.
In triangle ABC, since AC is parallel to DE, the segments AD and AC are proportional. This relationship can be expressed as AD = AC. Substituting the expressions gives us the equation: 2x - 1 = 3x - 1. Solving for x, we simplify to 2x - 3x = -1 + 1, leading to -x = 0, or x = 3. Option B (4), C (5), and D (6) do not satisfy the equation derived from the parallel lines, making them incorrect. Only x = 3 maintains the equality, confirming the proportional relationship in the triangle.
If the combined amount of donations collected by Kevin, Fran, and Brooke exceeded the amount Lamar collected by $250, what was the total amount of donations collected by all five club members?
- A. $500
- B. $1,200
- C. $2,500
- D. $3,200
Correct Answer & Rationale
Correct Answer: C
To determine the total amount of donations collected by all five club members, we start with the information that the combined donations of Kevin, Fran, and Brooke exceeded Lamar's by $250. If we denote Lamar's donations as \( L \), then the amount collected by Kevin, Fran, and Brooke is \( L + 250 \). Thus, the total donations from all five members can be expressed as \( L + (L + 250) = 2L + 250 \). To find a plausible total, we consider the options. - A: $500 is too low, as it doesn't allow for both \( L \) and the excess amount. - B: $1,200 also falls short since it would imply \( L \) is negative. - D: $3,200 would require \( L \) to be too high, exceeding reasonable donation limits. C: $2,500 fits perfectly, allowing \( L \) to be $1,125, which is a feasible figure. Therefore, the total amount is logically $2,500.
To determine the total amount of donations collected by all five club members, we start with the information that the combined donations of Kevin, Fran, and Brooke exceeded Lamar's by $250. If we denote Lamar's donations as \( L \), then the amount collected by Kevin, Fran, and Brooke is \( L + 250 \). Thus, the total donations from all five members can be expressed as \( L + (L + 250) = 2L + 250 \). To find a plausible total, we consider the options. - A: $500 is too low, as it doesn't allow for both \( L \) and the excess amount. - B: $1,200 also falls short since it would imply \( L \) is negative. - D: $3,200 would require \( L \) to be too high, exceeding reasonable donation limits. C: $2,500 fits perfectly, allowing \( L \) to be $1,125, which is a feasible figure. Therefore, the total amount is logically $2,500.
For what values of x does 5x ^ 2 + 4x - 4 = 0 ?
- A. x = 1/5 and x = - 1
- B. x = - 4/5 and x = 1
- C. x = (- 2±6 * √(2))/5
- D. x = (- 2±2 * √(6))/5
Correct Answer & Rationale
Correct Answer: D
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
If a +√x= b then x =
- A. √b-√a
- B. √(b-1)
- C. (b-a)²
- D. b²-a²
Correct Answer & Rationale
Correct Answer: C
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.