Which of the following is a factor of u²+uv-2v²?
- A. (u-v)
- B. (2u-v)
- C. (u-2v)
- D. (u+v)
Correct Answer & Rationale
Correct Answer: C
To determine the factors of \( u^2 + uv - 2v^2 \), we can factor the expression. Option C, \( (u - 2v) \), is a valid factor. When we perform polynomial long division or synthetic division using \( (u - 2v) \), we find that it divides evenly, confirming it as a factor. Option A, \( (u - v) \), does not satisfy the factorization, as substituting \( v \) does not yield a zero remainder. Option B, \( (2u - v) \), also fails to factor the expression correctly, leading to a non-zero remainder upon division. Option D, \( (u + v) \), similarly does not yield a zero remainder, confirming it is not a factor. Thus, only \( (u - 2v) \) is a valid factor of the expression.
To determine the factors of \( u^2 + uv - 2v^2 \), we can factor the expression. Option C, \( (u - 2v) \), is a valid factor. When we perform polynomial long division or synthetic division using \( (u - 2v) \), we find that it divides evenly, confirming it as a factor. Option A, \( (u - v) \), does not satisfy the factorization, as substituting \( v \) does not yield a zero remainder. Option B, \( (2u - v) \), also fails to factor the expression correctly, leading to a non-zero remainder upon division. Option D, \( (u + v) \), similarly does not yield a zero remainder, confirming it is not a factor. Thus, only \( (u - 2v) \) is a valid factor of the expression.
Other Related Questions
If a +√x= b then x =
- A. √b-√a
- B. √(b-1)
- C. (b-a)²
- D. b²-a²
Correct Answer & Rationale
Correct Answer: C
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
If (2w + 7)(3w - 1) = 0 which of the following is a possible value of w?
- A. -3
- B. -0.28571
- C. 01-Mar
- D. 07-Feb
Correct Answer & Rationale
Correct Answer: D
To solve the equation (2w + 7)(3w - 1) = 0, we set each factor to zero. 1. For 2w + 7 = 0, solving gives w = -3. This corresponds to option A, which is a valid solution. 2. For 3w - 1 = 0, solving gives w = 1/3, approximately 0.333. Option B, -0.28571, does not match this value. 3. Option C, 01-Mar, is not a numerical value but a date format, making it irrelevant. 4. Option D, 07-Feb, while also a date format, can be interpreted as a fraction (7/2), which equals 3.5, not a solution to the equation. Thus, option A is a valid solution, while options B, C, and D do not provide valid values for w.
To solve the equation (2w + 7)(3w - 1) = 0, we set each factor to zero. 1. For 2w + 7 = 0, solving gives w = -3. This corresponds to option A, which is a valid solution. 2. For 3w - 1 = 0, solving gives w = 1/3, approximately 0.333. Option B, -0.28571, does not match this value. 3. Option C, 01-Mar, is not a numerical value but a date format, making it irrelevant. 4. Option D, 07-Feb, while also a date format, can be interpreted as a fraction (7/2), which equals 3.5, not a solution to the equation. Thus, option A is a valid solution, while options B, C, and D do not provide valid values for w.
If a number from set M is selected at random, what is the probability that the number selected will be a factor of 12?
- A. 0.1
- B. 0.2
- C. 0.4
- D. 0.5
Correct Answer & Rationale
Correct Answer: C
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
Which of the following is a factor of x ^ 3 * y ^ 3 + x * y ^ 5 ?
- A. x ^ 3 - y ^ 3
- B. x ^ 3 + y ^ 3
- C. x ^ 2 + y ^ 2
- D. x + y
Correct Answer & Rationale
Correct Answer: C
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.