Which of the following represents the cost, in dollars, of renting a car for d days and driving m miles?
- A. 45+.25+ d+m
- B. 45.25+ dm
- C. 45d +.25m
- D. 45/d +25/m
Correct Answer & Rationale
Correct Answer: C
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
Other Related Questions
Which of the following is NOT a factor of x^4 +x^3?
- A. X
- B. X + 1
- C. X^3
- D. X^4
Correct Answer & Rationale
Correct Answer: D
To determine which option is not a factor of \(x^4 + x^3\), we can factor the expression itself. Factoring out the greatest common factor, we have \(x^3(x + 1)\). - **Option A: X** is a factor since \(x\) is part of \(x^3\). - **Option B: X + 1** is a factor as it is the remaining term after factoring \(x^3\). - **Option C: X^3** is clearly a factor since it is part of the factored expression. **Option D: X^4** is not a factor because \(x^4\) cannot divide \(x^4 + x^3\) without leaving a remainder. Thus, it does not fit into the factorization.
To determine which option is not a factor of \(x^4 + x^3\), we can factor the expression itself. Factoring out the greatest common factor, we have \(x^3(x + 1)\). - **Option A: X** is a factor since \(x\) is part of \(x^3\). - **Option B: X + 1** is a factor as it is the remaining term after factoring \(x^3\). - **Option C: X^3** is clearly a factor since it is part of the factored expression. **Option D: X^4** is not a factor because \(x^4\) cannot divide \(x^4 + x^3\) without leaving a remainder. Thus, it does not fit into the factorization.
Which of the following is a factor of x ^ 3 * y ^ 3 + x * y ^ 5 ?
- A. x ^ 3 - y ^ 3
- B. x ^ 3 + y ^ 3
- C. x ^ 2 + y ^ 2
- D. x + y
Correct Answer & Rationale
Correct Answer: C
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.
During a sale, the regular price of a pair of running shoes is reduced by 20 percent. $64.00, what is the regular price of the running shoes?
- A. $48.00
- B. $51.20
- C. $76.80
- D. $80.00
Correct Answer & Rationale
Correct Answer: D
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.
The price P, in dollars, that a store sets for an item is given by the equation P = C + 1/10 * C where C dollars is the store's cost for the item. If the store sets a price of $55.00 for an item, what is the store's cost for the item?
- A. $50.00
- B. $54.90
- C. $55.10
- D. $60.50
Correct Answer & Rationale
Correct Answer: A
To find the store's cost \( C \), we start with the equation \( P = C + \frac{1}{10}C \). This can be simplified to \( P = 1.1C \). Given that \( P = 55 \), we can set up the equation \( 55 = 1.1C \). Solving for \( C \) gives \( C = \frac{55}{1.1} = 50 \). Option A ($50.00) is correct, as it satisfies the equation. Option B ($54.90) incorrectly suggests a cost that would lead to a higher price than $55 when applying the markup. Option C ($55.10) implies a cost greater than the set price, which is illogical. Option D ($60.50) is also incorrect as it would result in a price far exceeding $55, making it unfeasible.
To find the store's cost \( C \), we start with the equation \( P = C + \frac{1}{10}C \). This can be simplified to \( P = 1.1C \). Given that \( P = 55 \), we can set up the equation \( 55 = 1.1C \). Solving for \( C \) gives \( C = \frac{55}{1.1} = 50 \). Option A ($50.00) is correct, as it satisfies the equation. Option B ($54.90) incorrectly suggests a cost that would lead to a higher price than $55 when applying the markup. Option C ($55.10) implies a cost greater than the set price, which is illogical. Option D ($60.50) is also incorrect as it would result in a price far exceeding $55, making it unfeasible.