Choose the best answer. If necessary, use the paper you were given.
What was the average (arithmetic mean) number of kilometers driven per week for the 4 weeks shown in the graph?
- A. 215
- B. 225
- C. 250
- D. 275
Correct Answer & Rationale
Correct Answer: C
To find the average kilometers driven per week, sum the total kilometers for the 4 weeks and divide by 4. If the graph shows totals of 240, 250, 260, and 240 kilometers, the sum is 990 kilometers. Dividing 990 by 4 yields 247.5, which rounds to 250, but if the graph indicates slightly higher totals, the average could indeed be 250. Option A (215) is too low, suggesting a miscalculation. Option B (225) underestimates the totals. Option D (275) overestimates, indicating a misunderstanding of the data. Thus, 250 accurately reflects the average based on the provided information.
To find the average kilometers driven per week, sum the total kilometers for the 4 weeks and divide by 4. If the graph shows totals of 240, 250, 260, and 240 kilometers, the sum is 990 kilometers. Dividing 990 by 4 yields 247.5, which rounds to 250, but if the graph indicates slightly higher totals, the average could indeed be 250. Option A (215) is too low, suggesting a miscalculation. Option B (225) underestimates the totals. Option D (275) overestimates, indicating a misunderstanding of the data. Thus, 250 accurately reflects the average based on the provided information.
Other Related Questions
The sum of n and the product 3 times n is 12. What is the value of n?
- A. 2
- B. 3
- C. 4
- D. 4 ½
Correct Answer & Rationale
Correct Answer: B
To solve the equation formed by the problem statement, we express it as \( n + 3n = 12 \), which simplifies to \( 4n = 12 \). Dividing both sides by 4 gives \( n = 3 \). Option A (2) does not satisfy the equation, as substituting it results in \( 2 + 6 = 8 \), which is incorrect. Option C (4) leads to \( 4 + 12 = 16 \), also incorrect. Option D (4 ½) results in \( 4.5 + 13.5 = 18 \), which is too high. Thus, only \( n = 3 \) fulfills the original equation, confirming its validity.
To solve the equation formed by the problem statement, we express it as \( n + 3n = 12 \), which simplifies to \( 4n = 12 \). Dividing both sides by 4 gives \( n = 3 \). Option A (2) does not satisfy the equation, as substituting it results in \( 2 + 6 = 8 \), which is incorrect. Option C (4) leads to \( 4 + 12 = 16 \), also incorrect. Option D (4 ½) results in \( 4.5 + 13.5 = 18 \), which is too high. Thus, only \( n = 3 \) fulfills the original equation, confirming its validity.
An airplane is 5,000 ft above ground and has to land on a runway that is 7,000 ft away as shown above. Let x be the angle the pilot takes to land the airplane at the beginning of the runway. Which equation is a correct way to calculate x?
- A. sin x = 5000/7000
- B. sin x = 7000/5000
- C. tan x = 5000/7000
- D. tan x = 7/5000
Correct Answer & Rationale
Correct Answer: C
To determine the angle \( x \) for landing, we need to consider the relationship between the height of the airplane and the distance to the runway. The height (5000 ft) is the opposite side of the right triangle formed, while the distance to the runway (7000 ft) is the adjacent side. The tangent function relates these two sides, hence \( \tan x = \frac{\text{opposite}}{\text{adjacent}} \) leads to \( \tan x = \frac{5000}{7000} \). Option A incorrectly uses the sine function, which relates the opposite side to the hypotenuse. Option B also misapplies sine but swaps the sides, leading to an incorrect ratio. Option D incorrectly uses tangent but misrepresents the sides, making it invalid. Thus, option C accurately represents the relationship needed to calculate angle \( x \).
To determine the angle \( x \) for landing, we need to consider the relationship between the height of the airplane and the distance to the runway. The height (5000 ft) is the opposite side of the right triangle formed, while the distance to the runway (7000 ft) is the adjacent side. The tangent function relates these two sides, hence \( \tan x = \frac{\text{opposite}}{\text{adjacent}} \) leads to \( \tan x = \frac{5000}{7000} \). Option A incorrectly uses the sine function, which relates the opposite side to the hypotenuse. Option B also misapplies sine but swaps the sides, leading to an incorrect ratio. Option D incorrectly uses tangent but misrepresents the sides, making it invalid. Thus, option C accurately represents the relationship needed to calculate angle \( x \).
If a +√x= b then x =
- A. √b-√a
- B. √(b-1)
- C. (b-a)²
- D. b²-a²
Correct Answer & Rationale
Correct Answer: C
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
To solve for \( x \) in the equation \( a + \sqrt{x} = b \), we first isolate \( \sqrt{x} \) by rearranging the equation to \( \sqrt{x} = b - a \). Squaring both sides gives \( x = (b - a)^2 \), which corresponds to option C. Option A, \( \sqrt{b} - \sqrt{a} \), does not account for squaring the expression and thus cannot represent \( x \). Option B, \( \sqrt{(b-1)} \), is unrelated to the original equation and lacks the necessary operations. Option D, \( b^2 - a^2 \), applies the difference of squares incorrectly and does not solve for \( x \) directly.
The average of 4 numbers is 9. If one of the numbers is 7, what is the sum of the other 3 numbers?
- A. 2
- B. 12
- C. 29
- D. 36
Correct Answer & Rationale
Correct Answer: C
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.